Math Ma

Logarithm Rules

- 1. Evaluate the following. (Your answer would not involve logarithm!)
 - (a) $\log_2 (2^3 \cdot 2^4)$ (b) $\log \frac{10^2}{10^5}$

(c)
$$\ln\left(e^{-\frac{1}{2}}\right)$$
 (d) $\log_{\sqrt{3}} 3$

- 2. Let $x = \ln A, y = \ln B$ and p is a number. Express the following only in terms of x, y and p.
 - (a) $\ln(A \cdot B)$ (b) $\ln \frac{A}{B}$
 - (c) $\ln A^p$ (d) $\log_{e^p} A$
- 3. Using what we observed in Problem 2, evaluate the following.
 - (a) $\log_2 5 + \log_2 0.8$ (b) $\log 2.5 \log 25$
 - (c) $\ln \frac{1}{\sqrt{e}}$ (d) $\log_{\frac{1}{9}} 3$

Rule for Exponentials	Rule for Logarithms
$b^x b^y = b^{x+y}$	$\log_b A \cdot B = \log_b A + \log_b B$
$\frac{b^x}{b^y} =$	$\log_b \frac{A}{B} =$
$(b^x)^p =$	$\log_b A^p =$
	$\log_{b^p} A =$

- 4. Solve x for each of the following equation.
 - (a) $2^{2x+3} = 5$ (b) $5^{x^2+4x-1} = 25^{x-1}$

5. Solve the equation $5^x = 17$ in two ways. One by taking \log_5 of both sides and the other by taking ln of both sides.

First method:Second method: $5^x = 17$ $5^x = 17$ $\log_5(5^x) = \log_5 17$ $\ln 5^x = \ln 17$ $x \stackrel{?}{=}$ $x \stackrel{?}{=}$

Change of base for logarithm

$$\log_b x = \frac{\ln x}{\ln b}$$

6. (a) $\log_5 7 \cdot \log_7 5$

(b) $(e^{\log_5 2})^{\ln 5}$

(c) $\log_2 9 + \log_4 3$ (d) $\log_2 9 \cdot \log_3 4$

7. Simplify each of the following as much as possible. **Two** of them will still have logarithm in the final answer.

(a)
$$\ln \frac{e^2}{4} + 2\ln 2$$
 (b) $\log_2 \sqrt{\frac{3}{8}} - \log_2 3 + \log_4 3$

(c)
$$\log_7(7^2 + 7^3)$$
 (d) $\log_3 5 \cdot \log_3 25$

(e) $2^{\log_4 5}$

(f) $5^{\log \frac{2}{5}} \cdot 25^{\log 5}$

Logarithm Rules – Solutions

1. (a) $\log_2 (2^3 \cdot 2^4) = \log_2 2^7 = 7$ (b) $\log \frac{10^2}{10^5} = \log 10^{-3} = -3$ (c) $\ln \left(e^{-\frac{1}{2}} \right) = -\frac{1}{2}$ (d) $\log_{\sqrt{3}} 3 = 2$

2. In exponential language we have $A = e^x, B = e^y$.

- (a) We have $A \cdot B = e^{x+y}$, so $\ln(A \cdot B) = x + y$.
- (b) We have $\frac{A}{B} = e^{x-y}$, so $\ln \frac{A}{B} = x y$.
- (c) We have $A^p = (e^x)^p = e^{px}$, so $\ln A^p = px$.
- (d) We have $A = e^x = (e^p)^{\frac{x}{p}}$, so $\log_{e^p} A = \frac{x}{p}$.

3. (a)
$$\log_2 5 + \log_2 0.8 = \log_2 (5 \cdot 0.8) = \log_2 4 = 2$$

(b) $\log 2.5 - \log 25 = \log \frac{2.5}{25} = \log \frac{1}{10} = -1.$
(c) $\ln \frac{1}{\sqrt{e}} = \ln e^{-\frac{1}{2}} = -\frac{1}{2}.$

- (d) $\log_{\frac{1}{9}} 3 = \log_{3^{-2}} 3 = -\frac{1}{2}$.
- 4. (a) There are two ways to solve the equation. First of all, we can use exponential rule to simplify the equation

$$2^{2x+3} = 5$$
$$2^{2x} = \frac{5}{8}$$
$$4^x = \frac{5}{8}$$
$$x = \log_4 \frac{5}{8}$$

The other method is to directly take \log_2 on both sides. By which we have

$$2x + 3 = \log_2 5$$

and hence

$$x = \frac{1}{2}(\log 25 - 3)$$

(b) To solve $5^{x^2+4x-1} = 25^{x-1}$, we first make everything base 5.

$$5^{x^2+4x-1} = 5^{2x-2}$$

Then the exponent must be the same, so we arrive at a quadratic equation

$$x^{2} + 4x - 1 = 2x - 2$$

$$x^{2} + 2x + 1 = 0$$

$$(x + 1)^{2} = 0$$

$$x = -1$$

5.

6. (a)
$$\log_5 7 \cdot \log_7 5 = \frac{\ln 7}{\ln 5} \cdot \frac{\ln 5}{\ln 7} = 1$$

(b) $(e^{\log_5 2})^{\ln 5} = e^{\frac{\ln 2}{\ln 5} \cdot \ln 5} = e^{\ln 2} = 2$
(c) $\log_2 9 + \log_4 3 = \log_2 3^2 + \log_{2^2} 3 = 2\log_2 3 + \frac{1}{2}\log_2 3 = \frac{5}{2}\log_2 3$
(d) $\log_2 9 \cdot \log_3 4 = \frac{\ln 9}{\ln 2} \cdot \frac{\ln 4}{\ln 3} = \frac{2\ln 3}{\ln 2} \cdot \frac{2\ln 2}{\ln 3} = 4$
7. (a) $\ln \frac{e^2}{4} + 2\ln 2 = \ln e^2 - \ln 4 + 2\ln 2 = 2 - 2\ln 2 + 2\ln 2 = 2$
(b) $\log_2 \sqrt{\frac{3}{8}} - \log_2 3 + \log_4 3 = \frac{1}{2}(\log_2 3 - \log_2 8) - \log_2 3 + \log_{2^2} 3 = \frac{1}{2}\log_2 3 - \frac{3}{2} - \log_2 3 + \frac{1}{2}\log_2 3 = -\frac{3}{2}$
(c) $\log_7(7^2 + 7^3) = \log_7 7^2(1 + 7) = \log_7 7^2 + \log_7 8 = 2 + \log_7 8$
(d) $\log_3 5 \cdot \log_3 25 = \log_3 5 \cdot 2\log_3 5 = 2(\log_3 5)^2$
(e) $2^{\log_4 5} = 2^{\frac{1}{2}\log_2 5} = (2^{\log_2 5})^{\frac{1}{2}} = 5^{\frac{1}{2}} = \sqrt{5}$
(f) $5^{\log\frac{2}{5}} \cdot 25^{\log 5} = 5^{\log\frac{2}{5} + 2\log 5} = 5^{\log 2 - \log 5 + 2\log 5} = 5^{\log 2 + \log 5} = 5^{\log 10} = 5$