Math Ma

- 1. Let $f(x) = 2^x$.
 - (a) Is f(x) an invertible function? How do you know?
 - (b) What is the meaning of $f^{-1}(x)$.
 - (c) Evaluate the following:

 $\log_2 32 =$ ____. $\log_2 \frac{1}{4} =$ ____. $\log_2 \sqrt{2} =$ ____. $\log_2 1 =$ ____.

- (d) $2^{\log_2 x} = \underline{\qquad} \log_2 2^x = \underline{\qquad}$.
- (e) What are the domain and range of $\log_2 x$?
- (f) Sketch the graph of $f(x) = 2^x$ and $f^{-1}(x) = \log_2 x$ on the same set of axis.

2. Use the fact that
$$\frac{d}{dx}e^{kx} = ke^{kx}$$
 to calculate $\frac{d}{dx}2^x$.

3. Simplify each of the following as much as possible.

(a)
$$\log_5 25$$
 (b) $\log \frac{1}{10\sqrt{10}}$

(c)
$$\ln e^{\pi}$$
 (d) $e^{-3\ln 2}$

(e) $7^{\log_7 3}$ (f) $11^{\log_5 11}$

(g)
$$\log_3(3^4 \cdot 3^7)$$
 (h) $\log_2\left(\frac{2^6}{2^{11}}\right)$

Logarithms – Solutions

1. (a) $f(x) = 2^x$ is invertible because it passes through the horizontal line test.

- (b) $f^{-1}(x)$ is the power we have to raise 2 to to get x.
- (c) $\log_2 32 = 5 \cdot \log_2 \frac{1}{4} = -2 \cdot \log_2 \sqrt{2} = \frac{1}{2} \cdot \log_2 1 = 0.$
- (d) $2^{\log_2 x} = x$. $\log_2 2^x = x$. This is by definition of the inverse function $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.
- (e) The domain of $\log_2 x$ is the range of 2^x , which is $(0, \infty)$. The range of $\log_2 x$ is the domain of 2^x , which is $(-\infty, \infty)$.

$$\frac{d}{dx}2^x = \frac{d}{dx}e^{\ln 2 \cdot x} = \ln 2 \cdot e^{\ln 2 \cdot x} = \ln 2 \cdot 2^x$$

3. (a) $\log_5 25 = 2$ (b) $\log \frac{1}{10\sqrt{10}} = \frac{3}{2}$

(c)
$$\ln e^{\pi} = \pi$$

(d) $e^{-3\ln 2} = (e^{\ln 2})^3 = 2^3 = 8$
(e) $7^{\log_7 3} = 3$
(f) $11^{\log_5 11}$
(g) $\log_3(3^4 \cdot 3^7) = \log_3(3^{11}) = 11$
(h) $\log_2\left(\frac{2^6}{2^{11}}\right) = \log_2 2^{-5} = -5$