Math Ma

1. Last weekend, Tegan went for a long leisurely walk around Boston. Here is the graph of f(t), her distance in miles t hours after the start of her walk.

(b) How long did it take for Tegan to walk x miles?

distance x	1	2	3	4	5
time t					

(c) What does the function f^{-1} , the inverse function of f, represent?

(d) How does the domain and range of f^{-1} relates to those of f?

(e) What is $f^{-1}(f(t))$? How about $f(f^{-1}(x))$?

(f) Sketch a graph of $f^{-1}(x)$ above. What does the two axes mean?

2. (a) Let $f(x) = x^3$. Is f(x) invertible? If it is, what is $f^{-1}(x)$? If not, how can we restrict the domain to make it invertible?

Sketch f(x) and $f^{-1}(x)$ on the same set of axes.

(b) Let $g(x) = x^2$.

Is g(x) invertible? If it is, what is $g^{-1}(x)$? If not, how can we restrict the domain to make it invertible?

Sketch g(x) and $g^{-1}(x)$ on the same set of axes.

3. Is $f(x)^{-1}$ the same as $f^{-1}(x)$?

4. (a)
$$f(x) = 2^x - 1$$
.

(b)
$$g(x) = -2x^6 + 7x^5 - \pi x + \sqrt{3}$$
.

(c)
$$h(x) = x^3 + x$$
.

(d)
$$r(x) = \frac{1}{x-2}$$

(e)
$$s(x) = \sqrt{x+5}$$

You can actually find the inverse function of **two** of the above functions. Which ones, and what are their inverses?

Inverse Functions – Solutions

1.	(a)		I	1	I	I	1	
		time t	1	2	3	4	5	6
		distance x	1.2	2	2.1	2.5	3	5
	(b)							
		distance x	1	2	3	4	5	
		time t	0.8	2	5	5.5	6	

- (c) $f^{-1}(x)$ is the number of hours it takes for Tegan to walk x miles.
- (d) The domain of f^{-1} is the range of f and the range of f is the domain of f.

(e)
$$f^{-1}(f(t)) = t$$
. $f(f^{-1}(x)) = x$

- (f)
- 2. (a) f(x) is invertible and $f^{-1}(x) = \sqrt[3]{x}$.

(b) g(x) is not invertible. If we restrict the domain to $[0, \infty)$, then $g^{-1}(x) = \sqrt{x}$. Or if we restrict the domain to $(-\infty, 0]$, then $g^{-1}(x) = -\sqrt{x}$.

- 3. $f(x)^{-1}$ is not the same as $f^{-1}(x)$. For example when f(x) = x, then $f^{-1}(x) = x$ and $f(x)^{-1} = \frac{1}{x}$.
- 4. (a) f is always increasing, so it is invertible. The domain of f^{-1} is the range of f, which is $(-1, \infty)$.
 - (b) Since

$$\lim_{x \to \infty} g(x) = \lim_{x \to -\infty} g(x) = -\infty,$$

g(x) cannot be one-to-one, and thus it is not invertible.

- (c) The derivative $h'(x) = x^2 + 1 > 0$, so h(x) is always increasing and thus is invertible. The domain of h^{-1} is $(-\infty, \infty)$.
- (d) r(x) is invertible and $r^{-1}(x) = \frac{1}{x} + 2$. The domain of $r^{-1}(x)$ is $(-\infty, 0) \cup (0, \infty)$.
- (e) s(x) is invertible and $s^{-1}(x) = x^2 5$. The domain of $s^{-1}(x)$ is $[0, \infty)$.