Critical Points. The critical points of *f* are all *a* in the domain of *f* such that

- $f'(a) = 0$,
- *• f ′* (*a*) does not exist, or
- *• a* is an endpoint of the domain.

Extremal Value Theorem. A continuous function on a closed interval must attain a global maximum and global minimum in the interval.

Strategy for finding global extrema on [*a, b*]**:**

Strategy for finding global extrema on (*a, b*)**:**

Strategy for finding global extrema on (*−∞,∞*)**:**

1. Let $f(x) = \frac{x^2}{x^2}$ $\frac{w}{e^x}$ be a function defined on [*−*2*,* 3]. (a) Find all critical points of f .

(b) Find all local extrema of *f*.

(c) Find the global extrema of *f* if they exist.

(d) Now we consider *f* as a function on $(-\infty, \infty)$, find the global extrema of *f* if they exist.

2. Below is the graph of *f ′* .

- (a) Where are the critical points of *f*?
- (b) Identify the local extrema of *f*.
- (c) Identify the inflection points of *f*.
- 3. Let $f(r) = 2\pi r^2 + \frac{256\pi}{r}$ $\frac{66\pi}{r}$.
	- (a) Find the global extrema of f on $[1, 8]$.
	- (b) Find the global extrema of f on $(0, \infty)$ if they exist.
- 4. An aluminum soft drink can has a volume of 128*π* cubic centimeters. In order to conserve resources, a soda company wants to minimize the amount of aluminum needed for a single can. What dimension should they make their cans?

More on Global Extrema – Solutions

- 1. (a) We first compute $f'(x) = 2xe^{-x} x^2e^{-x} = -x(x-2)e^{-x}$. The first type of critical points are those when $f'(x)$ is zero, so we have $x = 0, 2$. The second type of critical points are those when $f'(x)$ does not exist. We have none of those. The third type of critical points are end points. We have $x = -2, 3$. Hence in total we have four critical points $x = -2, 0, 2, 3$.
	- (b) We draw the sign chart of $f'(x)$.

$$
\begin{array}{c|cc}\nx & -2 & 0 & 2 & 3 \\
\hline\nf'(x) & - & 0 & + & 0 & - \\
\end{array}
$$

Hence $x = 0, 3$ are local minimum and $x = -2, 2$ are local maximum.

- (c) We are finding global extrema on a closed interval, so the Extremal Value Theorem gaurantees the existence on global extrema. Because $f(0) = 0, f(3) = \frac{9}{e^3} > 0$, the global minimum is at $x = 0$. On the other hand $f(-2) = 4e^2 > f(2) = 4e^{-2}$, so the global maximum is at $x = -2$.
- (d) In this case we only have two critical points $x = 0, 2$, which are local minimum and local maximum respectively. We need to look at the asymptotic behavior to make sure whether the global extrema exist. We have

$$
\lim_{x \to \infty} f(x) = 0 \quad \lim_{x \to -\infty} f(x) = \infty.
$$

Hence the global minimum exists at $x = 0$ and there is no global maximum.

- 2. (a) As we do not have endpoints here, the critical points of f are either when $f'(x)$ is zero or not defined. At $x = 2$ and $x = 3.3$ we have $f'(x) = 0$. At $x = -1$ and $x = 1$, we have $f'(x)$ is not defined. Hence the critical poitns are $x = -1, 1, 2, 3.3$.
	- (b) The local minima of *f* correspond to points of *f ′* which go from negative to positive, so *x* = 3*.*3 is this kind. The local maxima of *f* correspond to points of f' which go from positive to negative, so $x = 1$ is a local maximum.
	- (c) The inflection points of f correspond to turning points of f' , so $x = 2$ and $x = 3$ are inflection points.
- 3. The derivative of *f* is

$$
f'(r) = 4\pi r - \frac{256\pi}{r^2} = \frac{4\pi}{r^2}(r^3 - 64) = \frac{4\pi}{r^2}(r - 4)(r^2 + 4r + 16).
$$

The zeros of f' is $r = 4$.

(a) The critical points are $r = 1, 4, 8$. Looking at the sign chart of f' we know $r = 4$ is a local minimum and $r = 1, 8$ are local maxima. Hence $r = 4$ is the global minimum. As $f(1) = 2\pi + 25\pi = 258\pi$, $f(8) = 128\pi + 32\pi = 160\pi$, $r = 1$ is the global maximum.

(b) We compute the asymptotic behaviro of *f*.

$$
\lim_{r \to 0} f(r) = \infty \quad \lim_{r \to \infty} f(\)
$$

Hence $f(r)$ does not have global maximum, but has global minimum. The global minimum is the smallest local minimum, which is $r = 1$.

4. We first write down the function describing the surface area of the can in terms of the radius *r*. Suppose the height of the can is *h*. As the volume is fixed to be 128π , we have the equality $r^2 \pi h = 128\pi$, so $h = \frac{128\pi}{r^2}$ $\frac{28\pi}{r^2}$. The surface area of the can can be computed as $2 \cdot \pi r^2 + 2\pi r \cdot h = 2\pi r^2 + \frac{256\pi}{r}$ $\frac{6\pi}{r}$. This is the function which we found global extrema in problem 3. So the global minimum on $(0, \infty)$ would be at $r = 4$, $h = \frac{128\pi}{r^2}$ $\frac{28\pi}{r^2} = 8\pi.$