Math Ma Cubics and Higher-Degree Polynomials Fall 2016

- 1. For each description below,
 - sketch the graph of a cubic function f(x) with the specified characteristics.
 - find a formula for f(x)

There may be many possible answers, or none at all.

- (a) f(x) has zeros at $x = -\pi$, x = 2, and x = 5.
- (b) f(x) has only two zeros, at x = 2 and x = 5, and a y-intercept of -4.
- (c) f(x) has only one zero, at x = 2, and passes through the point (1, 5).
- (d) f(x) has no zero, and passes through the points (2,3), (5,-1).
- 2. Sketch the graph of y = x(x+2)(x-2). Where are the points having horizontal tangent lines?
- 3. Find a cubic polynomial with local minimum at x = 2 and local maximum at x = 5. Where is the inflection point?

- 4. For each description below,
 - sketch the graph of a polynomial function P(x) with the specified characteristics.
 - find a formula for P(x)

There may be many possible answers, or none at all.

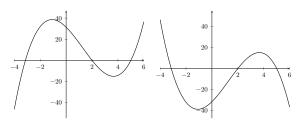
- (a) A degree 4 polynomial with a zero of multiplicity two at x = 1, zeros at x = 5 and x = e, and a y-intercept of 7.
- (b) A degree 5 polynomial with no zeros and $\lim_{x\to\infty} P(x) = -\infty$.
- (c) A degree 6 polynomial with no zeros and $\lim_{x\to\infty} P(x) = -\infty$.

5. (a) How many zeros can a degree n polynomial have at most? At least?

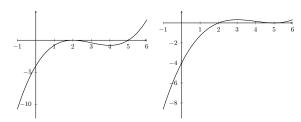
(b) How many points with horizontal tangent line can a degree n polynomial have at most? At least?

Cubics and Higher-Degree Polynomials – Solutions

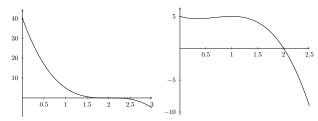
1. (a)
$$f(x) = a(x+\pi)(x-2)(x-5)$$



(b) $f(x) = a(x-2)^2(x-5)$ or $f(x) = b(x-2)(x-5)^2$. We have f(0) = -4, so $-4 = a \cdot 4 \cdot (-5)$ and $-4 = b \cdot (-2) \cdot 25$. Hence $a = \frac{1}{5}$ and $b = \frac{2}{25}$.

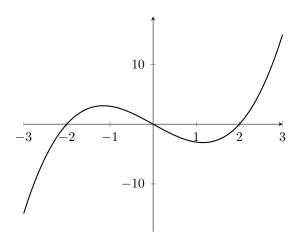


(c) $f(x) = a(x-2)^3$ or f(x) = a(x-2)Q(x) where Q(x) is a quadratic polynomial without zero.



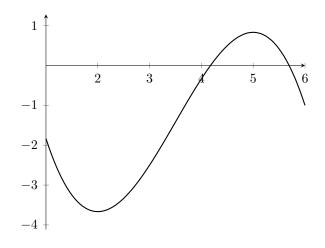
(d) By intermediate value theorem, there is no cubic polynomial with no zero.

2.

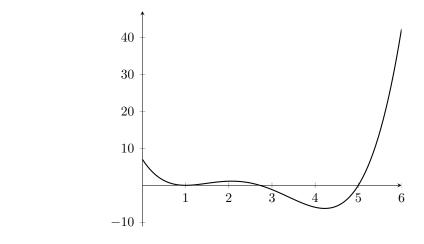


We have cubic function $f(x) = x(x+2)(x-2) = x^3 - 4x$. The derivative is $f'(x) = 3x^2 - 4$, which is zero when $x = \pm \frac{2}{\sqrt{3}}$. Hence the points with horizontal tangent lines are $x = \pm \frac{2}{\sqrt{3}}$.

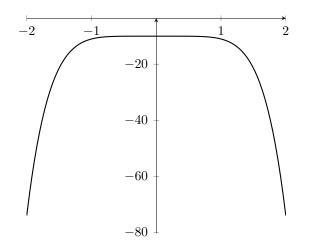
3. The cubic polynomial has local extremum at x = 2 and x = 5 means that the derivative has zeros at x = 2, 5. Hence f'(x) = a(x-2)(x-5). We know a should be negative because f(x) is increasing between [2,5]. Then f(x), as the antiderivative of $f'(x) = a(x^2 - 7x + 10)$, is $a(\frac{1}{3}x^3 - \frac{7}{2}x^2 + 10x)$, where a is negative.



4. (a)
$$P(x) = a(x-1)^2(x-5)(x-e)$$
. Since $P(0) = 7$, we have $7 = a \cdot 5e$ and $a = \frac{7}{5e}$.



- (b) A degree 5 polynomial must have a zero.
- (c) We can have $P(x) = -x^6 10$.



- 5. (a) A degree n polynomial has at most n zeros. If n is odd, then it has at least one zero. If n is even, it may happen that it has no zeros at all.
 - (b) Points with horizontal tangent lines correspond to zeros of the derivative, which is a degree n 1 polynomial. Hence there can be at most n 1 points with horizontal tangent lines. If n is even, there is at least one such points. If n is odd, there can be no such point at all.