Math Ma Derivative of Exponential Functions

- 1. Let $f(x) = 2^x$.
 - (a) Use the limit definition to find f'(x).

(b) Sketch the graph of f(x) and f'(x).

2.

$f(x) = 2^x$			$g(x) = 3^x$			$h(x) = 10^x$		
x	f(x)	estimate of $f'(x)$	\overline{x}	g(x)	estimate of $g'(x)$	x	h(x)	estimate of $h'(x)$
0	1	0.693	0	1	1.099	0	1	2.305
1	2	1.386	1	3	3.298	1	10	23.052
2	4	2.774	2	9	9.893	2	100	230.524
3	8	5.547	3	27	29.679	3	1000	2305.238
4	16	11.094	4	81	89.020	4	10,000	23052.381

What do you observe from the table?

- 3. What is the number e? Roughly how big is it?
- 4. If k is any constant, what is the derivative of e^{kx} ?

5. Find the derivative of the following functions. You do not need quotient rule!

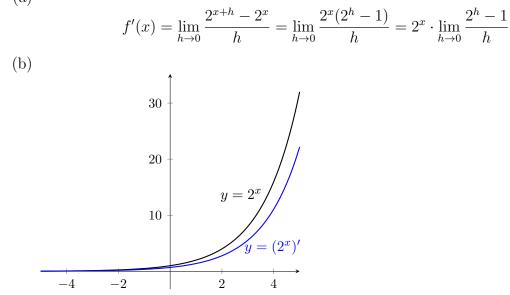
(a)
$$f(t) = e^t + e^\pi + \pi^e$$
 (b) $f(t) = \frac{1}{7e^{2t}}$

(c)
$$f(t) = \sqrt{e^t}$$
 (d) $f(t) = \frac{e^t + e^{4t}}{e^{2t}}$

(e)
$$f(t) = (t^2 - 2t + 5)e^{4t}$$
 (f) $f(t) = e^2 + e + 1$

6. Use the tangent line approximation of e^x to approximate $e^{0.1}$.

Derivative of Exponential Functions – Solutions



- 2. The derivative of an exponential function is proportional to the original function. The constant of proportionality are about 0.693, 1.099 and 2.305 for base 2, 3 and 10, respectively.
- 3. The number e is defined to be the number such that the tangent line at x = 1 of the exponential function e^x has slope 1. e is between 2 and 3.
- 4. The derivative of e^{kx} is ke^{kx} .
- 5. (a) e^{t} (b) $-\frac{2}{7}e^{-2t}$ (c) $\frac{1}{2}e^{0.5t}$ (d) $-e^{t} + 2e^{2t}$ (e) $(2t-2)e^{4t} + 4(t^{2} - 2t + 5)e^{4t}$ (f) 0
- 6. The tangent line of e^x at x = 0 passes through (0,1) and has slope 1. Hence the equation of the tangent line is

$$y - 1 = x.$$

We use the tangent line to approximate $e^{0.1} \approx 0.1 + 1 = 1.1$. This is an underestimate as exponential functions are concave up. We may use this to approximate $e = (e^{0.1})^{10} \approx 2.59$.