Math Ma **Differentiation Rules** Fall 2016

1. **(Power Rule)**

(a) We have computed the derivative of the following functions in the past. Fill in the table below.

(b) Let $f(x) = x^n$. Based on the table above, what would you guess $f'(x)$ should be?

(c) We may write $(x+h)^n = _ x^n + _ x^{n-1}h + _ x^{n-2}h^2 + \cdots$. What are the first two coefficients?

(d) Use the definition of derivative to find $\frac{d}{dx}(x^n)$.

Chandler is preparing to take a bath. Suppose at time t (measured in minutes), $f(t)$ gallons of hot water has been poured into the tub, and *g*(*t*) gallons of cold water has been poured into the tub.

2. **(Sum Rule)**

- (a) What function describes the amount of water (in gallons) in the tub at time *t*? What is the instantaneous rate of change (gallons/min) of the amount of water at time *t*?
- (b) Use the definition of derivative to find $\frac{d}{dx}[f(x) + g(x)].$

3. **(Constant Multiple Rule)**

- (a) What function describes the amount of hot water (in liters) in the tub at time *t*? What is the instantaneous rate of change (liter/min) of the amount of hot water at time *t*? (1 gallon \approx 3.78 liters)
- (b) Use the definition of derivative to find $\frac{d}{dx}$ [$c \cdot f(x)$], where c is a constant.

4. **(Product Rule)**

Olivia is doing an experiment on bacterial culture. The magical bacteria always grow in the shape of rectangle. Suppose $f(t)$ is the length in cm of the rectangular colony at time t , and $g(t)$ is the width in cm.

- (a) Suppose $f'(3) = 2$. Roughly how much longer does the colony grows between $t = 3$ and $t = 3.1$?
- (b) More generally, if *h* is a very small number, write down an approximation of the length of the colony at time $t + h$, in terms of the length and growing rate of length of the colony at time *t*.
- (c) What is the growing rate of the area of the colony at time *t*?
- (d) Use the definition of derivative to find $\frac{d}{dx} [f(x) \cdot g(x)]$.

Differentiation Rules

- Power Rule: $\frac{d}{dx}(x^n)$ =
- Sum Rule: $\frac{d}{dx}[f(x) + g(x)] =$
- Constant Multiple Rule: For a constant c , $\frac{d}{dx}$ $[c \cdot f(x)] =$
- Product Rule: $\frac{d}{dx}[f(x) \cdot g(x)] =$
- Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right]$ *g*(*x*) $\left[\frac{f'(x)g(x)-f(x)g'(x)}{g(x)^2} \right]$ $g(x)^2$ (You will derive this rule in your homework!)
- 5. Find the derivative of the following functions.

(a)
$$
f(x) = 2x^5 + 3x^2 + 5x + 4
$$

(b)
$$
f(x) = x + \frac{1}{x} + 1
$$

$$
(c) f(x) = \pi^5
$$

(d)
$$
f(x) = (3x^2 + 1)(x + \frac{1}{x})
$$

1.

(a)

(b) $f'(x) = nx^{n-1}$. (c) $(x+h)^n = x^n + nx^{n-1}h + \cdots$, which we can get by drawing the Pascal's triangle. (d)

$$
\frac{d}{dx}(x^n) = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = \lim_{h \to 0} \frac{(x^n + nx^{n-1}h + \dots + x^{n-2}h^2 + \dots + h^n) - x^n}{h}
$$
\n
$$
= \lim_{h \to 0} \frac{nx^{n-1}h + \dots + x^{n-2}h^2 + \dots + h^n}{h} = \lim_{h \to 0} (nx^{n-1} + \dots + x^{n-2}h + \dots + h^{n-1})
$$
\n
$$
= nx^{n-1}
$$

2. (a) The function $f(t) + g(t)$ describes the amount of water in the tub at time *t*? The instantaneous rate of change of the amount of water at time *t* is $f'(t) + g'(t) =$ $(f(t) + g(t))'$.

(b)

$$
\frac{d}{dx}[f(x) + g(x)] = \lim_{h \to 0} \frac{(f(x+h) + g(x+h)) - (f(x) + g(x))}{h}
$$

\n
$$
= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h}
$$

\n
$$
= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}
$$

\n(when both limits exist)
\n
$$
= f'(x) + g'(x)
$$

3. (a) The function 3*.*78*f*(*t*) describes the amount of water in the tub at time *t*? The instantaneous rate of change of the amount of water at time *t* is $(3.78f(t))'$ = $3.78f'(t)$.

(b)

$$
\frac{d}{dx} [c \cdot f(x)] = \lim_{h \to 0} \frac{c \cdot f(x+h) - c \cdot f(x)}{h}
$$

$$
= c \cdot \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
$$

$$
= c \cdot f'(x)
$$

4. (a) 0.2

- (b) $f(t + h) \approx f(t) + hf'(t)$
- (c) The white area is the difference $A(t+h)$ and $A(t)$, which is approximately $hf'(t)$ *·* $g(t) + f(t) \cdot hg'(t) + hf'(t) \cdot hg'(t)$. Divided by *h*, which is the time passed between *t* and $t + h$, the growing rate of the colony would roughly be $f'(t) \cdot g(t) + f(t) \cdot g'(t)$. The last term was omitted as *h* is very small.

(d)

$$
\frac{d}{dx}[f(x) \cdot g(x)] = \lim_{h \to 0} \frac{f(x+h) \cdot g(x+h) - f(x) \cdot g(x)}{h}
$$

=
$$
\lim_{h \to 0} \frac{(f(x+h) \cdot g(x+h) - f(x) \cdot g(x+h)) - (f(x) \cdot g(x+h) - f(x) \cdot g(x))}{h}
$$

(we add the second term and subtract it at the third term)

$$
\lim_{h \to 0} \frac{[f(x+h) - f(x)] \cdot g(x+h) - f(x) \cdot [g(x+h) - g(x)]}{h}
$$
\n
$$
= \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \cdot g(x+h) + f(x) \cdot \frac{g(x+h) - g(x)}{h} \right)
$$
\n
$$
= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \lim_{h \to 0} g(x+h) + f(x) \cdot \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}
$$
\n(when all three limits exist)

\n
$$
= f'(x) \cdot g(x) + f(x) \cdot g'(x)
$$

5. (a)
$$
f'(x) = 10x^4 + 6x + 5
$$

\n(b) $f'(x) = 1 - \frac{1}{x^2}$
\n(c) $f'(x) = 0$
\n(d) $f'(x) = 6x \cdot (x + \frac{1}{x}) + (3x^2 + 1) \cdot (1 - \frac{1}{x^2})$