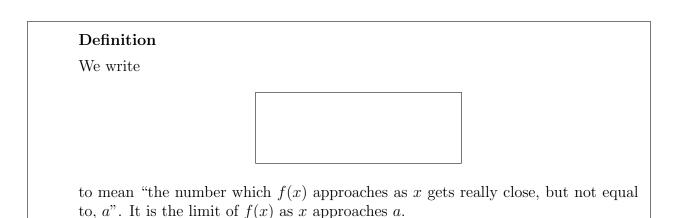
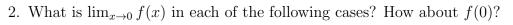
Math Ma

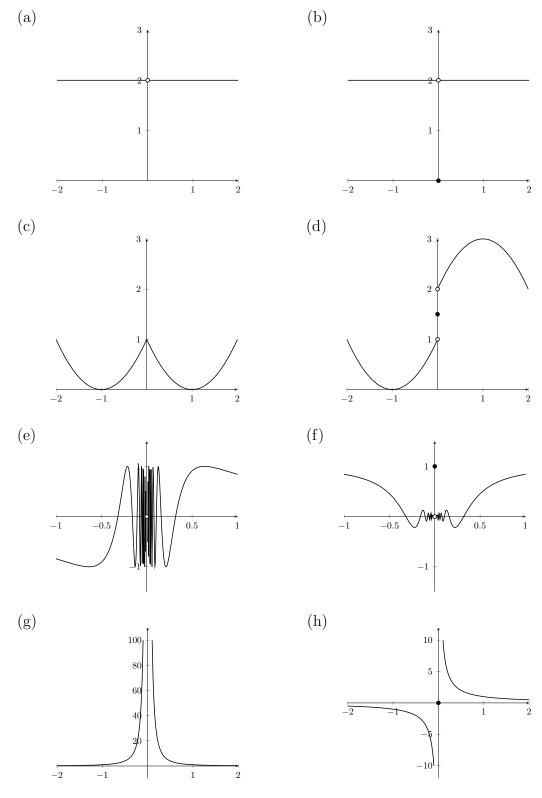
Limits

- 1. Let $f(x) = x^2$.
 - (a) Carefully write down each step of the calculation of f'(1) from definition.

(b) Sketch the graph of the function $\frac{f(x) - f(1)}{x - 1}$.



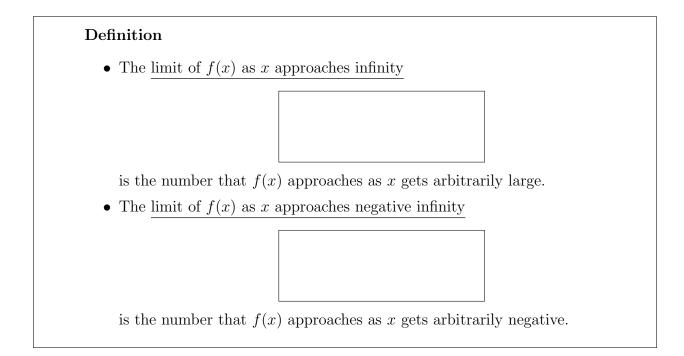




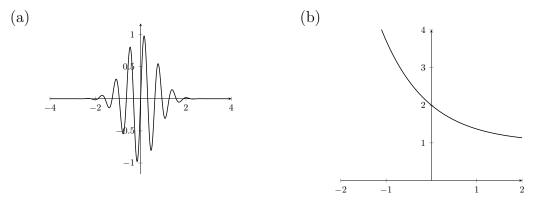
- 3. (Food for thought)
 - Let

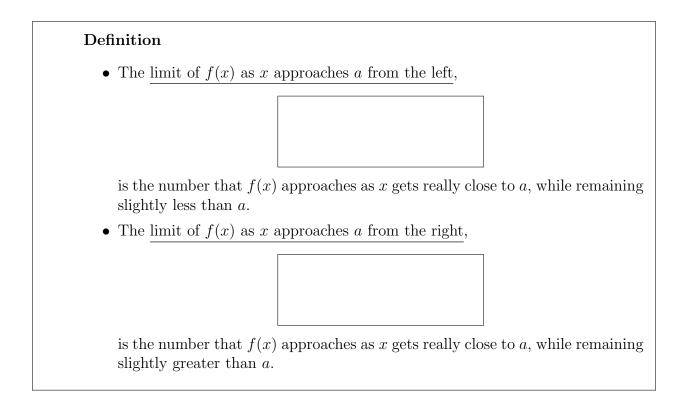
$$f(x) = \begin{cases} 1 & \text{if } x = \pm \frac{1}{2^n} \text{ for some integer } n \\ 0 & \text{otherwise} \end{cases}$$

be a function defined for all real numbers. What is $\lim_{x\to 0} f(x)$?



4. What is $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$ in each of the following cases?





5. (a) Sketch the graph of |x| and $\frac{|x|}{x}$.

Determine the followings

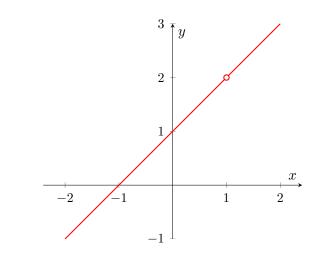
(b)
$$\lim_{x \to 0^+} \frac{|x|}{x}$$
 (c) $\lim_{x \to 0^-} \frac{|x|}{x}$ (d) $\lim_{x \to 0} \frac{|x|}{x}$

(e) What is the derivative of f(x) = |x|?

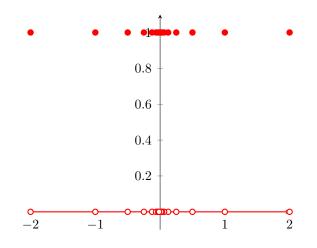
Limits – Solutions

1. (a)

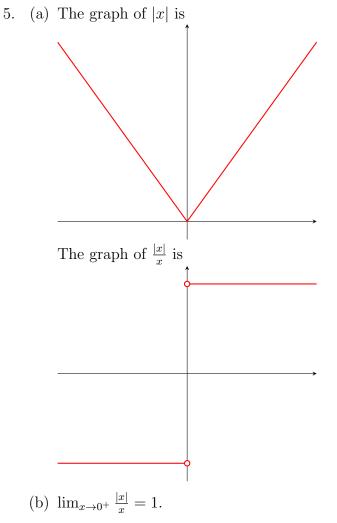
$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2$$
(b)



- 2. (a) $\lim_{x\to 0} f(x) = 2, f(0)$ does not exist.
 - (b) $\lim_{x\to 0} f(x) = 2, f(0) = 0.$
 - (c) $\lim_{x\to 0} f(x) = 1, f(0) = 1.$
 - (d) $\lim_{x\to 0} f(x)$ does not exist, f(0) = 1.5.
 - (e) $\lim_{x\to 0} f(x)$ does not exist, f(0) does not exist.
 - (f) $\lim_{x\to 0} f(x) = 0, f(0)$ does not exist.
 - (g) $\lim_{x\to 0} f(x)$ does not exist (with the type of infinity), f(0) does not exist.
 - (h) $\lim_{x\to 0} f(x)$ does not exist, f(0) does not exist.
- 3. $\lim_{x\to 0} f(x)$ does not exist. The reason is that no matter how close x gets to 0, if we get a little bit more closer to some $x = \frac{1}{2^n}$, f(x) jumps away from 0 to 1. Here is an illustrating picture



4. (a) $\lim_{x\to\infty} f(x) = 0$, $\lim_{x\to-\infty} f(x) = 0$. (b) $\lim_{x\to\infty} f(x) = 1$, $\lim_{x\to-\infty} f(x)$ does not exist.



(c) $\lim_{x\to 0^-} \frac{|x|}{x} = -1.$ (d) $\lim_{x\to 0} \frac{|x|}{x}$ does not exist. (e)

$$f'(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$