AUTOMORPHIC CUSPIDAL REPRESENTATIONS AND MANS FORMS
(ENCOUNTERS AND RUMINATIONS)
peter sarnak
CHAT

UCLA MAY 2021.

THESE NOTES WERE UPDATED AFTER THE LECTURE TO CORRECT SOME POINTS).

OLDER HISTORY
H. MAAS (STUDENT OF SIEGEL)

EXTENDED SIEGEL'S WORK ON THETA FUNCTIONS:

$$
G=S O_{F}(p, q), H=S L_{2} \text { OR } \widetilde{S L_{2}} \text {. } \mathbb{Q}
$$

$H \times G$ IS A DUAL PAIR
(H) (h, g) is $\tilde{\Gamma} \times G(\mathbb{Z})$ INVARIANT

ON $H \times G$.

$$
f(h):=\int_{G(L))^{G(\mathbb{R})}} 1 \cdot \Leftrightarrow(h, g) d g
$$

WHEN SUMMED OVER THE GENUS OF F (IDE. ADELIC INTEGRAL) IS AN EISENSTEN SERIES ON H.
"SIEGEL-WEIL FORMULA"

- replacing 1 by other automorphic forms MAMS FINDS THAT $f(h)$ SATISFIES $\begin{aligned} & \text { NATURAL DIFFERNTIAL EQUATIONS (AS DO EISENSEIN } \\ & \Longrightarrow \text { SERIES!) }\end{aligned}$

SIMPLEST SETTING
$S L_{2}(\mathbb{R})$, Γ A DISCRETE SUBGROUP WITH FINITE VOLUME QUOTIENT.

$$
H H=S L_{2}(\mathbb{R}) / S O_{2}(\mathbb{R}) \quad \text { UPPER HALF PLANE. }
$$

T) H NOT COMSAT.

SEEK SOLUTIONS TO

$$
\text { (*) }\left\{\begin{array}{c}
\Delta \phi+\lambda \phi=0, \Delta=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \\
\phi(\gamma z)=\phi(z) \\
\phi \in L^{2}(\Gamma \mid H)
\end{array}\right.
$$

MAMS PROVED THAT THE SPACE IS FINITE DIMENSIONAL, BUT COULD NOT PRODUCE ANY SUCH FORMS IN ANY GENERALITY.
BASIC EXAMPLE: $\quad \Gamma=P S L_{2}(\mathbb{Z}),\left(P G L_{2}(\mathbb{Z})\right)$.
$\phi(-\bar{z})=\phi(z)$ EVEN;
EVERYWHERE UNRAMIFIED CUSP FORMS FOR G_{2} / Q CUSPIDAL CONDITION: $\int_{0}^{1} \phi(x, y) d x=0$ FOR ALL $y>0$ (INVARIANT SUBSPACE ${ }^{\circ}$ CUSP; SPECTRUM IS DISCRETE!)

Nodal portrait

SELBERG: DEVELOPED THE TRACE FORMULA AND THE ANALYTIC CONTINUATION OF EISENSTEIN SERIES, FOR THIS EXAMPLE IN ORDER TO PROVE THAT SUCH CUSF FORMS EXIST.

NB: THE PROOF BY SELBERG AND IN GENERAL BY LANGLANDS OF THE ANALYTIC CONTINUATION OF. EISENSTEIN SERIES IS CARRIED OUT FOR ANY DISCRETE GROUP AND MAKES NO USE OF ARITHMETIC. IT IS IMPORTANT THAT IT DOESN' AS THIS ALLOWS FOR ALL THE ARITHMETIC APPLICATIONS!

- selberg proves a "Weyl law"

$$
\#\left\{\cdot \lambda_{j}: \lambda_{j} \leqslant \lambda \operatorname{cusp} \operatorname{EGENNAL}\right\}+M(\lambda) \sim \frac{A_{2} E A()^{(1 H)}}{4 \pi} \lambda
$$

HERE $M(\lambda)$ IS THE WINDING NUMBER OF THE CONSTANT TERM OF THE EISENSTEIN SERIES (NON-NEGATIVE).
FOR PST $(\mathbb{Z}), M(\lambda)$ IS EXPRESSIBLE IN TERM OF $\rho(S) \Rightarrow M(\lambda)=O(\sqrt{\lambda} \log \lambda)$ \Rightarrow THAT MOST OF THE SPECTRUM IS CUSPIDAL!

SELBERG CONJECTURED THAT THE ABUNDANCE OF HAAS CUSP FORMS WAS TRUE IN GENERAL (DIMENSION 2 WEYL LAW).

IT TURNS OUT THAT THE OPPOSITE IS TRUE, THESE TRANSCENDENTAL FORMS ARE VERY UNSTABLE AND THEIR EXISTENCE 15 TIED TO ARITHMETIC AND FUNCTORIALITY.

PHILLIPS - $5:$

$$
x=\Gamma \mid H
$$

$Y(x)=Y(\Gamma):=$ THE DEFORMATION SPACE OF Π IN THE SPACE OF LATTICES $\operatorname{IN} S L_{2}(\mathbb{R})$
= DEFORMATION SPACE OF RIEMANN SURFACES WITH cUSPS.
THE COTANGENT SPACE TO $Y(\Pi)$
AT Γ IS CANONICALLY THE SPACE
OF HOLOMORPHIC QUADRATIC DIFFERENTIALS
ON X ; OR WHAT IS THE SAME WEIGHT 4 CUSP FORMS $A F O R ~ \Pi$.

IF u_{j} is A MAASS CUSP FORM FOR Γ (Γ ARITHMETIC)

$$
\lambda_{j}=\frac{1}{4}+t_{j}^{2} \quad, t_{j}>0
$$

THEN IF THE RANKIN-SELBERG L-FUNCTION

$$
L\left(\frac{1}{2}+i t_{j}, u_{j} \times Q\right) \neq 0
$$

THEN U_{j} IS DISSOLVED INTO A POLE OF THE EISENSTEIN SERIES ON DEFORMING Γ ALONG Π_{t} IN THE DIRECTION Q.
A "FERMI-GOLDEN RULE" GIVES AN EXACT DISSOLVING CONDITION IN TERMS ON THE NONVANISHING OF A GLOBAL L-FUNCIION ON ITS CRIILAL LINE!
WOLPERT

FOR ALL BUT COUNTABLY MANY θ, TO HAS NO L²-EIGENFUNCTION WITH $\lambda>0$.

- there is no robust analytic CONSTRUCTION OF MACS FORMS, IN THIS CASE AND MORE GENERALLY.

WHY DO WE CARE ABOUT THESE ELUSIVE OBJECTS FROM A NUMBER THEORETIC POINT OF VIEW?

TWO ILLUSTRATIVE EXAMPLES FOR $G L_{2}$
(A)

$$
\begin{aligned}
& d(n):=\sum_{V / n} 1 \quad \text { \# of Divisors } \\
& \begin{array}{r}
\sum_{n=1}^{\infty} \frac{d(n)}{\eta^{s}}=\rho^{2}(S) ; \quad \text { THE "L-FUNCTION" } \\
\begin{array}{r}
\text { OF A MAS FORM }
\end{array} \\
\text { NAMELY }
\end{array}
\end{aligned}
$$

CORRELATIONS OF $d(n)$
WITH ITS SHIFTS BY $h \geqslant 0$

$$
\sum_{n \leq x}^{1} d(n) d(n+h)
$$

AND ALSO ANALOGUES ON PROGRESSIONS.

SELBERG:

$$
\sum_{n=1}^{\infty} \frac{d(n) d(n+h)}{n^{5}} \text {, HAS A MEROMORPHIC }
$$

CONTINUATION TO ALL OF $\not \subset$
WITH POLES AT

$$
\frac{1}{2}+i t_{j}, \quad \lambda_{j}=\frac{1}{4}+t_{j}^{2}
$$

MAAS CUSP FORMS FOR $S L_{2}(\mathbb{Z})$!

THIS ALSO MAKES CLEAR THE RELEVANCE IN APPLICATIONS OF THE "RAMANUJAN - SELBERG" CONJECTURE ; THAT $\lambda_{1} \geqslant \frac{1}{4}$ FOR CONGRUENCE SUBGROUPS OF $S L_{2}(\mathbb{Z})$.
(B) HILBERT'S 11-TH PROBLEM concerning local to global. principles FOR REPRENTATIONS OF INTEGERS IN A NUMBER FIELD BY INTEGRAL QUADRATIC FORMS:

SIEGEL: HIS "MASS FORMULA" AND SEGEL-WEIL FORMULA.
in the definite case the involves HOLOMORPHIC HILBERT MODULAR FORMS -VERY ALGEBRAIC IN NATURE, BUT POSSIBLY OF HALF INTEGRAL WEIGHT.

OVER Q SOLVED BY DUKE-IWANIEC OVER K SOLVED BY COGDELLPIATETSKY SAAPIKO/S.

- KEy input are all the mats forms!
- in these and related applications of all forms it is the full spectral THEORY OF LD $(\Gamma \mid G)$ THAT CONTROLS THE dIOPHANTINE ANALYSIS YIA THE "RAMANUJAN cONJECTURES".

Transcendental nature and general role of MaAs forms

$$
G=G L_{n}, \quad n \geqslant 2 ; / \mathbb{Q}
$$

X A UNITARY CENTRAL CHARACTER.

$$
L^{2} \operatorname{cusp}\left(G L_{n}(\mathbb{Q}) \mid G L_{n}(\mathbb{A}), X\right)
$$

IS BY DEFiNITION THE $G L_{n}(A)$ INVARIANT SUBSPACE OF ALL ϕ 'S FOR WHICH

$$
\int_{N(\mathbb{Q}) \mid N(A)} \phi(\ln) d n=0 \text {, FOR ALL } g \in G
$$

Where N ranges over all the unipotent radicals OF THE Q PARABOLIC SUBGROUPS OF $G L_{n}$.

- Not obvious that this space is big.
- Leu cusp decomposes into a discrete

DIRECT SUM OF IRREDUCIBLE (UNITARY) REPRESETATIONS π OF $G L_{u}(A)$.

$$
\pi \cong \bigotimes_{v} \pi_{v}
$$

THERE COUNTABLY MANY SUCH $\pi^{\prime} S$ AND THEY ARE THE BUILDING BLOCKS (ATOMS) OF THE THEORY.

- THEY COME in different flavors DICTATED BY THEIR ARCHIMEDIAN. COMPONENT (AND THIS is SPECIAL TO NUMBER FELDS)
- COHOMOLOGICAL ($G, K)$ COHOMOLOGY
- MANS TYPE.

AMONG THESE ARE ONES THAT CORRESPOND TO GALOIS REPRESENTATIONS

FINITE, $\ell-A D I C, \cdots$
GREAT PROGRESS ON THESE, WILES/TAYLOR...
BUT FOR HALF OF THE SAY FINITE 2-dImensional ones, THE EVEN ONES UNDER COMPLEX CONJUGATION WHICH ARE EXPECTED TO CORRESPOND TO MASS FORMS WITH $\lambda=1 / 4$; MUCH LESS PROGRESS.

TO understand the number theoretic importance OF THESE VARIOUS SPECIES, WE SHOULD FIRST ASK HOW THEY ARE USED IN NUMBER THEORY ह; LEADS TO
"THE UNREASONABLE EFFECTIVENESS OF AUTOMORPHIC FORMS INNMBER THEORY"

AMONG THE MANY THINGS THAT I WOULD POINT TO, IS THAT THEY ALLOW ONE TO UNDERSTAND THE VARIATION IN P OF LOCAL QUANTITIES.

THIS INCLUDES (BUT CERTAINLY NOT RESTRICTED TO) THE L-FUNCTIONS (EULER PRODUCTS)

$$
L(5, \pi, S T A N D A R D)
$$

WITH π AUTOMORPHIC CUSPIDAL.
IN FACT ALL (GOOD) EULER PRODUCTS ARE EXPECTED TO COME FROM THESE Π ISS.

SO, IF YOURMAFE L-FUNCTIONS GENERALIZING RIEMANN'S ZETA FUNCTION, THEN AT LEAST IN TERMS OF WHAT WE KNOW TODAY, YOU HAVE TO TURN TO THE GARDEN IN WHICH THEY PRE PLANTED LL CuSP .

I WOULD GO SO FAR AS TO SAY THAT FROM THIS POINT OF VIEW, THE
FUNCTION FIELD (THAT IS Q OR K REPLACED BY $F_{q}(t)$ OR A FINITE EXTENSION THEREOF)

THE ROLE OF AUTOMORPHIC FORMS IS FAR LESS CENTRAL. AFTER ALL GROTHENDIECK'S COHOMOLOGY THEORY ALLOWS ONE TO PROVE THE CENTRAL THEOREMS ABOUT THE CORRESPONDING ZETA AND L - FUNCTIONS.

- NOTE that in the function FIELD SETTING THERE IS NO ARCHIMEDIAN PLACE AND NO MANS FORMS.
$G L_{1}$; HECKE CHARACTERS TRANSCENDENCE
IN FORMULATING CLASS FIELD THEORY
- Well defined an extension of Gal (k/k).,
W_{K}, WHOSE 1 -dImENSIONAL REPRESENTATIONS CORRESPOND TO THE HECK L-FUNCTIONS ($G L_{1}$ AUTOMORPHIC FORMS).
- HICK DISTINGUISHED HIS CHARACTERS INTO TWO TYPES
- Finite image
- INFINETE imAGE "GROSSEN"

WELL GOES FURTHER

- grossen is type Au if their COEFF LIE in a FIXED NUMBER FIELD.
- GROSSEN NOT OF TYPE to WHIEN The valves are (presumably) transcendrantal.

INDEED THIS 15 THE CASE AND FOLLOWS FROM THE SIX EXPONENTIALS THEOREM (LANG-SIEGEL;... OBSERVED BY WALDSCHMIDT)

IF $x_{1}, x_{2}, y_{1}, y_{2}, y_{3} \quad A R E$
LINEARLY INDEPENDENT OVER \& THEN AT LEAST ONE OF

$$
e^{x_{i} y_{j}}
$$

is TRANSCENDENTAL.

THE ROLE OF THE TYPE A_{0} CHARACTERS IN TERMS OF HASSE-WRIL ZETA FUNCTIONS WAS CLARIFIED BY WELL, WHO ASKS ABOUT NON A_{0}.

- THey are part of any analysis OF THE DISTRIBUTION PRIMES IN NUMBER WELDS (HECK). HECK HAD TO INTRODUCE THEM EVEN IF ALL HE WANTED TO DO WAS AnAlytically contime $J_{k}(s)$!

FOR $G L_{n}, \quad n \geqslant 2$
CLOZEL HAS FORMULATED DEFINTIONS OF π BEING TYPE A_{0}, BASICALLY IF IT'S SATAKE AND L-PARAMRTRRS LIE IN A FIXED NUMBER FIELD.
(BUZZARD-GEE AND MORE RECENTLY BERNSTEIN HAVE STUDIED THIS FURTHER ANID PaNTED TO SUBTLETIES IN THE DEFINITIONS CONNECTED WITH TWISTS).
WHERE DO MA ASS FORMS LAND?

FOR $G L_{2} / Q$, WE have sEEN That THOSE WITH EIGENVALUE $1 / 4$ PROBABLY ARE OF TYPE AD AND CORRESPOND TO FINITE TWO DIMENSIONAL GALOIS REPRESENTATIONS.

THE ONLY MODEST RESULT THAT I KNOW IS:
(5 BRUMLRY) IF ϕ IS A MANS CUSP FORM WHOSE COEFFICIENTS ARE RATIONAL INTEGERS ORIN A QUADRATIC FIELD $\neq Q(\sqrt{5})$ THE $\lambda=\lambda(\phi)=1 / 4$ AND IT CORRESPONDS TO A two dimensional solvable gills rrtreseninfion.

- IF $\lambda>1 / 4$ THEN I EXPECT (AND ASSUME SO DO OTHERS) THAT π has TRANSCENDENTAL PARAMETERS; THEY ARR THE Analogue of not type A_{0}.

THE ONLY IS FOR WHICH THIS IS KNOWN ARE THE ONES EXPICITLY CONSTRUCTED BY MAMS AS THETA LIFTS FROM $\delta O(1,1)$, IN WHICH CASE THE TRANSCENDENCE FOLLOWS FROM THE SIX EXPONENTIALS TAM.

IF THE π 's IN $L_{\text {CUSP }}^{2}$ ARE THE ATOMS THEN A FUNDAMENTAL QUESTION IS HOW DO THEY INTERACT.

ONE WAY IS MEASURED BY DETERMINING WHEN AN L-FUNCTION (OF THE GENERAL TYPE DEFINED BY LANGLANDS) THAT 15 ASSOCIATED TO THEM hAS A POLEATS=1.

FOR EXAMPLE IF $\pi_{1}, \ldots, \pi_{\tau}$ ARE AS ABOVE WHEN DOES

$$
L\left(s, \pi_{1} \times \cdots \times \pi_{r}\right) \text { HALE A POLE AT } s=1 \text { ? }
$$

IF THE π_{j}^{\prime} 's CORRESPOND TO GALOIS REPRESENTATIONS OR EVEN REPRESENTATIONS OF WK THEN THE ANSWER IS GIVEN BY COMPUTING INVARIANTS.

HOW ABOUT GENERAL π_{j} 's, MAASS FORMS.
Langlands proposes an extension of W_{K} CALLED LG, WHOSE FINITE DIMENSIONAL REPRESENTATIONS CORRESPOND TO THE π_{j}^{\prime} S AND WOULD EXPLAIN HOW THEY INTERACT.

I AM A BIT SKEPTICAL ABOUT A NON-CIRCULAR DEFINITION OF LG FOR THE SImple reason that it would have to gl A. FINITE DIMENSIONAL DESCRIPTION OF OUR ELUSIVE ϕ 's AT THE BEGINNING.
(19)

FUNDAMENTAL CONJECTURES AND COUNTING
THE MAIN CONJECTURES ABOUT THE T'S IN LCUSP ARE
(A) GENERALIZED RAMANUJAN CONJECTURE THAT:
π_{v} IS TEMPERED AT EVERY PANE GU.
(B) $L(S, \pi$, STANDARD SAIISIFIES

THE RIEMANN HYPOTHESIS
ALL THE ZEROS OF THE COMPLETED
L FUNCTION ARE ON $\operatorname{Re}(s)=1 / 2$.
WHILE (A) APPEARS TO BE SOLID WITH VERY STRONG APPROXIMATIONS TO ITS TRUTH BEING KNOWN; (B) is MORE CONCERNING TO ME.

WE HIGHLIGHTED THE EXISTENCE
AND ABUNDANCE OF Π 'S AS BEING CRITICAL TO THE THEORY. ACTUALLY FOR (B) IT IS CRITICAL THAT, THERE NOT BE TOO MANY π 's.
THAT THERE ARE ONLY COUNTABLY MANY π^{\prime} 's IS GOOD NEWS (IT IS HARD TO IMAGINE (B) HOLDING IF THERE WERE CONTINOOS DEFORMATIONS)
(20)

FOR A GIVEN π ONE CAN DEFINE THE ANALYTIC CONDUCTOR " $C(\pi)$ " WHICH MEASURES THE COMPLEXITY OF π (IT IS MADE OUT THE RAMIFIED AND ARCHIMEDEAN PLACES).

GIVEN K AND n

$$
\mathcal{F}_{k, n}(x)=\#\left\{\pi \in L_{\text {cusp }}^{2}\left(G L_{n}\right): c(\pi) \leqslant x\right\}
$$

IS FINITE.
BRUMLEY AND MILICEVIC (2020) HAVE ALL BUT PROVED A SEAANVEL-WEYL LAW:

$$
y_{k, n}(x) \sim c\left(y_{k, n}\right) x^{n+1} \text { As } x \rightarrow \infty
$$

WHERE $C\left(\exists_{K, x}\right)$ HAS A "TAMAGAWA NUMBER" INTERPRETATION.

NOW (B) IMPLIES A VERY STRONG SPACING BETWEEN DIFFERENT $\pi^{\prime} S$ WITH $e(\pi) \leqslant x$.

TAAT is T_{G} AND Π_{G}^{\prime} CANNOT BE CLOSE FOR $|v| \ll(\log x)^{2}$ WITHOUT Π BEING CoEQUAL TO π ! SO IT IS GOOD THAT $\mathcal{F}_{K, n}(x)$ IS LIMITED IN ITS GROWTH.
WHILE ALL SEEMS SAFE FOR n FIXED; M首 CONCERN IS AS $n \rightarrow \infty$, COULD THERE BE ?

