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1 CHAT

I’m delighted to have been asked by Shekar and Chi-Yun to be part of the ‘experiment’ in this
(experimental) series of talks: CHAT: Career, History and Thoughts. Shekar has asked me to “take
a step back and talk about. . . larger visions that were then incarnated in specific results. . . specific
influences etc.”

This has given me the excuse to think about the various evolutions of interest and focus that I
and other mathematicians have had. It may be illuminating to consider those arcs of interest that
connect different fields and different projects in mathematics—sometimes in more personal than
‘formal’ ways.

There is, of course, also the evolution of our subjects. Thinking of Algebraic Geometry, how it had
its center of gravity in the Italian school—led by Francesco Severi—in the early twentieth century.
The temper of that school was non-rigor. They were very focused on the ‘geometry’ —of ’algebraic
geometry’—as their primary source of intuition. Among the freedoms they took for themselves was
to often assume that the objects they were dealing with could be put “in general position”—and
give no formal justification for this.

The move towards focusing on the ‘algebra’ —of ’algebraic geometry’—while, concomitantly, com-
ing up with a rigorous approach to the subject was successfully done by Oscar Zariski (and others)
who yoked the powerful commutative algebra of Wolfgang Krull and Emmy Noether (and others)
to the intuition of the Italians.

At approximately the same time there were interesting ultra-algebraic approaches to aspects of—at
least—the algebraic geometry of curves, such as Claude Chevalley’s Introduction to the Theory of
Algebraic Functions of One Variable. If you haven’t taken a look at this, do, since it presses a
purely algebraic view of the algebraic geometry of curves, without a picture in the book, or even
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pictorial language—it is all fields and extensions of fields— it’s a curious tour de force with no hint
of geometric intuition rather analogous to the way George Perec wrote an entire novel2 in which
the letter “e” never occurs in the text.

In contrast, there was the Séminaire Chevalley—that I attended in Paris, in 1957/8—where Cheval-
ley developed his ideas about the foundations of algebraic geometry: a view of the subject that was
a precursor to Grothendieck’s Langage des Schémas.

At the time—the late fifties of the past century—I was a graduate student working in Topology—
or, as I would refer to it at the time “Pure Topology,” meaning that I felt its true mission to be
to understand topological truths unencumbered by crutches such as smoothness hypotheses—or,
heavens forbid!—algebraic structure. In my thesis I proved the Schoenflies Conjecture that says
that any reasonably collared (n−1)-dimensional sphere in n-space was (topologically) the ‘standard’
(n− 1)-dimensional sphere.3 I was very much in awe of the magical construction of R.H. Bing who
showed that the double of the closure of the bad component of the complement of the Alexander
horned sphere in the three-dimensional sphere S3 is again (topologically) S3 giving, therefore, a
thoroughly wild and untamable involution of S3:

 
4

And I was fascinated by knots in S3. Knots and their exquisitely idiosyncratic properties, are the
vital essence of three-dimensional topology; these have the DNA that governs the development,
and evolution, of that field; and knots form a link to many other—seemingly far-flung—aspects of
mathematics.

In time, I found myself drawn more and more toward algebraic geometry—initially in work with
Michael Artin where we applied Nash theory (i.e., real algebraic geometry) to the study of periodic
points of diffeomorphisms. A natural move for me was to try to understand algebraic geometry per
se; and then, later, the extraordinarily powerful view of mathematics afforded by Grothendieck’s

2La Disparition

3Subsequently people have proved that (for all n 6= 4) smoothly embedded (n−1)-dimensional spheres are smoothly
standard; the 4-dimensional case is still open.

4Courtesy of Cameron Brown
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theory of schemes. And how it launched a true fusion of arithmetic, algebra and geometry. “Arith-
metic Algebraic Geometry” is a phrase quite familiar nowadays—and certainly very familiar to
many in this seminar—but at the inception of the Langage des Schémas that fusion of different
viewpoints, and techniques had a brilliant newness to it—and deepened each of the three subjects5;
it was something I couldn’t keep away from.

It was natural, then, for me to work with Mike Artin in the formulation of Étale Homotopy Theory
which brought into play the full context of homotopy types, but connected directly to algebraic
geometry–and even more intriguingly, to arithmetic. As I muse over this now I recall that one
other project I had in mind—never to be developed at all, at least by me—was to associate to each
étale homotopy type, a full Postnikov tower (algebraic geometric—very likely: necessarily with
infinite-dimensional objects).

When I was trying to get a feel for number theory, I found that a certain illuminating analogy
between the knot theory that I knew as a topologist and the phenomenology of prime numbers
(that I was trying to become at home with) was exceedingly helpful, as a bridge. I’ve returned to
it often as a learning device; it allows two-way traffic, from knots to primes, and from primes to
knots. It got me to beam in on cyclotomic extensions—the objects that were once referred to by
Serge Lang as “the backbone of number theory”— since they are analogous to abelian coverings
of the three-dimensional sphere ramified at links. It made me immediately ‘at home’ in number
theory. I imagine that many mathematicians have examples of similar levers that allow them to
move from one type of intuition to another.

For a recent beautiful introductory account of the analogy between number theory and knot theory,
see M. Morishita’s treatise, Knots and Primes, [6] and his archiv survey: [8].

So, this is what I want to “CHAT” about. This basic analogy Primes ↔ Knots pairs purely
arithmetic structures with topological structures, such as:

5This is reminiscent of René Descartes’ [3]:

. . . there is no need to impose any restrictions on our mental powers; for the knowledge of one truth
does not, like skill in one art, hinder us from discovering another; on the contrary it helps us. . . It must
be acknowledged that all the sciences are so closely interconnected that it is much easier to learn them
all together than to separate one from the other. If, therefore, someone seriously wishes to investigate
the truth of things, he ought not to select one science in particular, for they are all interconnected and
interdependent. . . .
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The question-marks in this framework are worth further exploration, I think. I’ve actually talked
about this a few times, the latest being in a celebration conference for my very good friend Valentin
Poenaru’s 80-th birthday. (This paper is a rewriting—in the direction of a “CHAT”— of Primes,
Knots, and Po [9]; i.e., the notes to my talk at that conference.)

I realized, after having given that lecture that one could be even more precise, by making the
comparison between prime numbers and—more specifically—the class of hyperbolic knots (which,
in contrast to the class of all knots have very few members, conjecturally, in each commensurability
class6). This choice also has the virtue of allowing us to make use of the hyperbolic volume of the
complement of the knot, vol(K), as a ready-made analogue to the logarithm of the norm of the
prime7.

The format of our comparison is then:

Prime Numbers p ↔ Hyperbolic Knots K

log p ↔ vol(K)

So what I’ll say today will recall a bit of what I said there, but go a bit further.

2 The Underlying Analogy: S := Spec(Z) as The “three-dimensional
sphere.”

First, any connected finite extension of the ring of integers Z is ramified—so S is simply connected.

6Two knots K,K′ are said to be commensurate if there are finite covers M,M ′ of their respective knot comple-
ments such that M is homeomorphic to M ′.

7As Morishita commented on an early draft of these notes, one might also take the closely related Gromov norm
of the knot complement.
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As for the cohomology of S := Spec(Z) one needs some class field theory, but reformulated in
the vocabulary of étale (and some other Grothendieckian) cohomology theories. The scheme S
possesses a three-dimensional ‘Poincaré-type’ duality theorem for étale and flat cohomology with
values in the multiplicative group Gm in the sense that—at least ignoring a bit of 2-torsion8—

• H i(S,Gm) is (canonically) equal to {±1}, 0, 0,Q/Z, and 0 for i = 0, 1, 2, 3, and > 3 respective;

• If F is a finite flat group scheme over S and F ∗ := Hom(F,Gm) its (Cartier) dual finite
flat group scheme, then cup-product induces a perfect pairing of cohomology groups (for the
flat—fppf—topology over S—again ignoring a bit of 2-torsion, or working with H∗c as in
Theorem 1.1 of [2]):

H i(S, F )⊗H3−i
c (S, F ∗) −→ H3

c (S,Gm) = Q/Z.

In a word, S is morally 2-connected and enjoys a 3-dimensional Poincaré duality “oriented”
by the coefficient sheaf Gm.

2.1 A prime ideal (p) in the ring of integers Z

The algebra here is just given by the natural “reduction mod p” homomorphism

Z→ Z/pZ = Fp.

We will avoid the prime p = 2 since some minor differences would have to be acknowledged at
various points otherwise; so prime will mean odd prime in the discussion below. We will be taking
the standard viewpoint of modern algebraic geometry, and think of this surjective homomorphism
as giving us an embedding of schemes,

K := Spec(Fp) ↪→ Spec(Z) = S,

making this embedding ‘’like” the embedding of a knot in the three-dimensional sphere S3. To
understand this, we should examine, first, the separate geometries of the schemes K = Spec(Fp),
S = Spec(Z), and S \ K.

The facts of life of the theory of finite fields tells us that for every positive integer n, up to
isomorphism, there is a unique field of cardinality pn, Fpn given as a field extension Fpn/Fp which
is Galois, cyclic, and degree n. Moreover the (cyclic) Galois group of this field extension has a
canonical generator: the Frobenius automorphism x 7→ xp. In a word

Spec(Fpn)→ Fp

is a cyclic (unramified!) Galois cover with Galois group canonically Z/nZ. An algebraic closure
F̄/Fp is an appropriate union of these field extensions, and its Galois group—i.e., the fundamental

group of K— is (canonically) isomorphic to Ẑ, the profinite completion of Z. From the étale

8that can be gotten rid of by appropriately taking account of the infinite prime. . .
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homotopy perspective, Spec(F̄) is contractible, and therefore K = Spec(Fp) is homotopically a

K(Ẑ, 1)-space.

So, we view our prime p as a knot: K ↪→ S; and two primes p and q as a link: K t L ⊂ S.

2.2 An (actual, topological) knot K in the three-sphere S3

Let K be (a knot; i.e.,) diffeomorphic to S1 and smoothly embedded in S3,

K ↪→ S3.

The ambient three-sphere S3 is 2-connected and enjoys a 3-dimensional Poincaré duality with a
canonical isomorphism H3(S3; Z) ' Z while the knot K is a K(π, 1) where its fundamental group
π is infinite cyclic. For technical reasons I will always take K to be given with an orientation–i.e.,
with a canonical isomorphism H1(K; Z) ' Z—so K is (canonically) a K(Z, 1)-space—i.e., the
fundamental group of K has a canonical generator, just as K = Spec(Fp) does.

As for the knot complement
X = XK := S3 −K ↪→ S3,

Alexander duality establishes a Z-duality between H1(X; Z) and

∂ : H2(S3,K; Z)
'−→H1(K; Z) = Z,

giving us a canonical isomorphism:

H1(XK ; Z) = Z

which tells us that all finite abelian covering spaces of S3 branched at the knot, but unramified
outside it, have cyclic groups of deck transformations, that these cyclic groups have canonical
compatible generators, and that

Xab
K

Γ ' Z
��

XK

the maximal abelian covering space of XK , has group of deck transformations Γ canonically iso-
morphic to Z.

Or equivalently, setting
ΠK := π1(XK , x),
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with suitable base point x—the fundamental group of the knot—we have

Πab
K := ΠK/[ΠK ,ΠK ] ' Z.

Up to isotopy, the knot complement XK may be viewed as compact manifold with torus boundary,
TK = ∂XK , and within that torus—up to homotopy—there’s a normal (’meridianal’) loop m within
a plane the intersects the knot at some point, tracing out a cycle

{m} = NK ⊂ TK ⊂ XK .

In anticipation of our comparison we might call the image of

DK = π1(TK) = Z× Z

in ΠK the decomposition group of the knot, and, perhaps, the image of

IK = π1(NK) = Z

the inertia subgroup. The fundamental group of the knot, in any event, comes with maps

IK ↪→ //

'
��

DK

��
Z Πab

K'
oo ΠK

oo

A basic theorem gives us that V = VK := H1(Xab
K ; Q) is a finite dimensional Q-vector space. The

natural action of the canonical generator of the group of deck transformations Γ ' Z on Xab
K induces

an automorphism of VK whose characteristic polynomial PK(T ) is the Alexander Polynomial of the
knot K.

There are multiple ways of approaching, and understanding, the information in PK(T ) (e.g., through
the combinatorial braid group theory around HOMFLYS).

Here is a view of the zeroes of the Alexander Polynomial that is natural enough: for any nonzero
complex number z consider the homomorphism ψz : ΠK → C∗ that sends the generator of Πab :=
Π/[Π,Π] to z. This defines a linear system (of complex vector spaces of dimension one) V (z) over
X. We have that dimCH1(X,V (z)) is equal to the order of vanishing of the Alexander polynomial
PK(T ) at T = z.

Since the analogue (in number theory) to the topological fundamental group is the étale funda-
mental group—which for a smooth complex variety is the profinite completion of the topological
fundamental group—we might prepare for this, in anticipation of our analogy, by defining two knots
K, K ′ to be profinitely equivalent if there is an isomorphism between the profinite completions
of their basic group diagrams,

(1̂) ÎK ↪→ D̂K −→ Π̂K .
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and

(1̂′) ÎK′ ↪→ D̂K′ −→ Π̂K′ ;

and similarly for links.

This raises two questions:

1. Are profinitely equivalent knots, or links, isomorphic?9 Are knots that are profinitely trivial
actually trivial?

2. Let us say, casually—not precisely—that a knot invariant has a “profinite definition” if it can
be computed directly from the profinite completions (1̂). Which of the knot invariants have
profinite definitions (and therefore carry over directly to the context of primes numbers) and
which do not?

For example, the Alexander polynomial does have a “profinite definition” but it is not obvious that
the general HOMFLYS does; perhaps it doesn’t.

3 Going back to the number field case: K ↪→ S

Now consider our prime p viewed as ’knot’ K embedded in S,

K ↪→ S,

and form the ‘knot complement’

X := S − K = Spec(Z[1/p] ↪→ S.

An argument very akin to Alexander duality (given the cohomological facts we have just recalled)
establishes a canonical isomorphism

H1(X ; Z) ' Z∗p

(where Z∗p is the group of units in the ring Zp of p-adic integers). Another way of saying this is that
the maximal abelian extension of Q unramified outside the prime p consists of the field generated
over Q by the union of all p-power roots of unity, and the Galois group of that field extension is
canonically isomorphic to Z∗p.

If p > 2 we can write
Z∗p ' F ∗p × Γ

9As I learned from Norbert A’Campo and Louis Funar, there has been some–not yet published—investigation of
this. So, perhaps,in a later draft of these notes I will be able to include some discussion of this.
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where Γ is the infinite cyclic pro-p-group of 1-units in Zp and is generated, for example, by the
1-unit 1 + p:

Γ = (1 + p)Zp .

In particular, all finite abelian covering spaces of S branched at K—i.e., finite abelian extensions of
Q unramified except at the prime p (and ∞)—have Galois groups that are cyclic, and canonically
isomorphic to the finite quotients (Z/pmZ)∗ of the topological group Z∗p. In anticipation of things
to come, set:

Λ := Zp[[Z
∗
p]]

noting that this ring is isomorphic to a direct product of p−1 copies of the power series ring in one
variable Zp[[T ]], where if i is an integer modulo p− 1 the i-th factor of Λ is given by the surjective
Zp-algebra homomorphism

χi : Λ −→ Zp[[T ]].

This is the unique Zp-algebra homomorphism that extends the continuous group homomorphism
from Z∗p =' F ∗p × (1 + p)Zp ⊂ Λ∗ to Zp[[T ]]∗ obtained by the stipulations that

• x ∈ F ∗p be sent to

(xi, 1) ∈ F ∗p × Γ = Z∗p ⊂ Zp[[T ]]

and

• (1 + p) ∈ Γ be sent to 1 + T ∈ Zp[[T ]].

Set
ΠK := πet1 (X , x),

with suitable base point x —the étale fundamental group of our knot K—we have that in relatively
standard parlance,

ΠK = GQ,{p,∞},

i.e., is the quotient of Gal(Q̄/Q that is the Galois group of the maximal extension of Q in an
algebraic closure Q̄ that is unramified except at p and ∞.

As with topological knots the ‘fundamental group of the prime,’ comes with inertia and decompo-
sition groups

IK ↪→ DK −→ ΠK = GQ,{p,∞}.

From our previous discussion,
Πab
K := ΠK/[ΠK,ΠK] ' Z∗p,

and if X ab → X is the maximal unramified abelian (connected) cover, then we can also say

“Gal(X ab/X )” = Πab
K = Z∗p.

A natural analogue to the finite dimensional Q-vector space VK := H1(Xab; Q) discussed above is
the étale 1-st homology group, taken first, with p-adic integral coefficients,

MK := Het
1 (X ab; Zp) = lim

n
Het

1 (X ab; Z/pnZ),
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or—tensoring with Qp—we get the vector space

VK := Het
1 (X ab; Zp)⊗Zp Qp.

The module MK is naturally a Λ-module, and VK a Λ ⊗Zp Qp-module. Tensoring MK with the
p − 1 projection operators χi described above, we get for each i mod p − 1 a Zp[[T ]]-module that
we’ll call M i

K.

The behavior of these modules depends crucially on the parity of i. It is a marvelous theorem in
Iwasawa theory that if i is ’odd’ (which makes sense since our prime p is not 2) then our module M i

K
is a finitely generated Zp-module, and therefore V i

K = M i
K⊗Zp Qp is a finite dimensional Qp-vector

space.

By definition–but subject to possibly different normalization—the Iwasawa polynomial for the
pair (p, i) (i odd, modulo p − 1) is the characteristic polynomial gp(i;T ) ∈ Zp[T ] of the operator
T acting on this vector space VK. These polynomials gp(i;T ) or, more precisely, their zeroes are
crucial for much number theoretic phenomena. For example, if for a given p and all odd i mod p−1,
they are all 1—i.e., have no zeroes—the prime p is what is called regular and Kummer’s relatively
easy procedure of proving Fermat’s Last Theorem for exponent p can be made to work. In general,
by what is known as the ‘main conjecture” (which is a theorem) the zeroes of gp(i;T ) correspond in
a one-one fashion, and in a natural way, to the zeroes of the Leopold-Kubota L-function Lp(s, ω

1−i).

3.1 Brief comments on comparison and differences

• If by unknotted one means that the fundamental group of the knot is abelian, every prime
is ’knotted.’

• A serious distinction between knots and primes has to do with what is called wild inertia
a phenomenon that exists, and is of crucial importance in number theory, but there’s no
corresponding complexity in our analogous situation in knot theory.

• There is a duality in the structure of the Alexander polynomial (it is invariant under inversion
t 7→ t−1; hence if θ is a root, so is θ−1). But there is nothing like that for Iwasawa polynomials.

Given the Gm-orientation of S, the corresponding duality for the Iwasawa polynomial would—
if it existed—send the index i to j := 1 − i and since j would then be even, gj(T ) has not
been defined. Of course, you could simply, by fiat, define gj(T ) so that it exhibits the duality,
but lacking (yet) any number theoretic motivation, that would be too formal a move to
contemplate.

4 Two knots and two primes

4.1 A pair of (disjoint) knots K,L embedded in the three-sphere S3

Here we can consider the embeddings:
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K ↪→ XL := S3 − L

and

L ↪→ XK := S3 −K

Choose arbitrary base points and consider the induced homomorphisms of π1,

π1(K) −→ ΠL.

In anticipation of the analogy to come, let

{FrobK} ∈ ΠL

denote the conjugacy class of the image of the canonical generator of π1(K) in ΠL. This is indeed
well-defined, independent of the choice of base points. Similarly we have

{FrobL} ∈ ΠK .

To be sure, we can’t yet compare these conjugacy classes, since they live in different groups. But
passing to the abelian quotient groups of ΠK and ΠL, both are canonically isomorphic to Z we can
indeed compare the images of {FrobK} and {FrobL} in

Πab
K = Z = Πab

L ,

and those images are given— respectively—by the linking number of K in L and the linking
number of L in K, these being equal with opposite sign. The proof of this equality is usually given
by identifying these numbers with the cup product of the fundamental classes in H1(XK) and
H1(XL) in H2(XK,L) = Z where XK,L := S3 − {K ∪ L}.

4.2 A pair of (distinct) primes p, q

In parallel with our previous subsection, let K := Spec(Fp) and L := Spec(Fq). Consider the
embeddings:

K ↪→ XL := Spec(Z[1/p])

and

L ↪→ XK := Spec(Z[1/q])

Choose arbitrary base points and consider the induced homomorphisms of the étale fundamental
groups
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πet1 (K) −→ ΠL.

Denote by
{FrobK} ∈ ΠL

the conjugacy class of the image of the canonical generator of πet1 (K) which is independent of the
choice of base points. Similarly we have

{FrobL} ∈ ΠK

.

Here again, we can’t yet compare these conjugacy classes, since they live in different groups. Even
passing to the abelian quotient groups of ΠK and ΠL, which are canonically Z∗p and Z∗q respectively,
and where the image of {FrobK} is the element p ∈ Z∗q and the image of {FrobL} is the element
q ∈ Z∗p, we simply have elements in different groups and so are not (yet) comparable. In a word,
the linking “number” of p with q (in that order) is the element p in Z∗q , while the linking “number”
of q with p (in that order) is the element q in Z∗p–no clear way to make any correspondence, yet.
Nevertheless each of these groups Z∗p and Z∗q have unique subgroups of index two (consisting of
‘squares’ of elements) and the famous comparison to be made here is to ask whether p being a square
in Z∗q (or equivalently, mod q) has anything to do with q being a square in Z∗p (or equivalently, mod
p). Indeed it does, as given by the classical quadratic reciprocity theorem. Namely, p is a square
mod q if q is a square mod p , except in the case where both p and q are both congruent to −1 mod
4, in which case p is a square mod q if and only if q is not a square mod p. (One of the many proofs
of this follows the lines of the proof I hinted at above of skew-symmetry of linking number.10)

5 Borromean primes and ’Cebotarev arrangements’

5.1 Borromean primes

The Borromean Ring is that well-known link of three disjoint ‘unknots’ that has the property that if
you ignore any of the three unknots the other two are unlinked, yet the three taken all together are
somehow linked. John Milnor defined a class of invariants that serve as obstructions to linkage of
the above sort, these being secondary (or higher) linking numbers that can be defined—in analogy
with standard linking numbers—as secondary (or higher) cohomology operations related to the
vanishing of cup-products, the Massey triple product being the first example of these. The clean
general structure corresponds to what is called an A∞-algebra structure on chain complexes, such
as was discussed by Francois Laudenbach in this conference (he obtained it from Morse functions
on the knot manifold with Dirichlet and Neumann conditions on the boundary).

One can establish a striking analogy to this, with prime numbers, obtaining secondary (or higher)
versions of the quadratic reciprocity theorem, as is done in the work of Morishita, Redei, and others

10Po raised the question of whether Gauss himself—who, after all, had introduced the integral formula for the
linking number—might have seen some analogy between that concept and the structure surrounding the quadratic
reciprocity theorem.
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(cf. [6], [7], and Section 4 of citeM2). Specifically, given three distinct primes p, q, r all congruent
to 1 mod 4 and each a quadratic residue of any of the others, there is a mod 2 invariant which
gauges how triply-entangled the three primes are; moreover, as is the case with old-fashioned linking
numbers, the natural definition of this invariant is given somewhat asymmetrically in terms of the
roles played by p, q and r; yet, the theorem is that the invariant itself is independent of permutation
of these.

Here is the description of this invariant,

link(p, q, r) ∈ {±1},

as given by Redei (cf. section 8 of [6]). Under the assumptions of the previous paragraph there is
a nontrivial integral zero (x, y, z) of the quadratic form

X2 − qY 2 − rZ2

and moreover, one can assume that g.c.d((x, y, z) = 1, y is even, and x − y ≡ 1 modulo 4. Now
form α := x+

√
qy and consider the (non-Galois) extension of Q,

K := Q(
√
q,
√
α).

Then
link(p, q, r) = 1 ∈ {±1}

if and only if the prime p splits completely in K. Otherwise, link(p, q, r) = −1.

An example of linked Borromean triples of primes is given (by D. Vogan—cf. loc.cit.) by

(p, q, r) = (13, 61, 937).

5.2 ’Cebotarev arrangements’

Here is a thought-experiment that I once mused about a long time ago, but will try to sharpen a
bit here: I think of it not at all as a problem to be resolved11 but rather as just a somewhat casual
way of appreciating visually how vastly entangled the collection of all primes are.

Imagine choosing one hyperbolic knot in every commensurable equivalence class of hyperbolic knots,
and then arranging these knots (up to equivalence) in S3 so that they form a mutually disjoint
ensemble:

C := tiKi ⊂ S3

where we have ordered them compatibly with their hyperbolic volume. By an admissible Galois
cover of S3 (relative to C) let us mean a finite cover f : M3 → S3, Galois and ramified over at
worst a finite subcollection of knots Σ = K(1) t K(2) t · · · t K(n) of C in the natural sense; i.e.,
such that f restricted to Y := M3− f−1Σ the pullback of S3−Σ is a locally trivial covering space

11although the easiest is just to formulate it as a ’question’
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of X := S3 − Σ with free action of a finite group G on M3 (the “Galois group ”of the cover) such
that Y/G = X.

A knot in C which is branched in M3 → S3 we say is ramified in the cover and if it isn’t we say it
is unramified in the cover. Any unramified knot K in an admissible cover M3 → S3 gives rise to
a conjugacy class of elements in G = Gal(M3/S3) by the analogue of the Frobenius construction
alluded to earlier. Thus, for all but finitely many knots in C we have a well-defined conjugacy class

{FrobK(M3/S3)} ⊂ G.

Let us say that the collection C is a Cebotarev Arrangement if the following statistical rule
holds for every admissible cover M3/S3 and every conjugacy class {c} ⊂ G = Gal(M3/S3)

lim
k→∞

1

k
#
[
Ki, i ≤ k | {FrobKi(M

3/S3)} = {c}
]

=
|{c}|
|G|

,

where the limit here is compiled by ordering the knots compatibly with their hyperbolic volume.

In effect, one is asking that—with these conventions–the Frobenius conjugacy classes are uniformly
distributed in fundamental groups.

The only reason for my formulating this notion is to connect it to The Cebotarev Density Theorem,
the closely analogous statement for primes.

Is there such a Cebotarev arrangement? If so, how bewilderingly complex, and yet somehow
organized, this entangled collection would be, each knot winding about infinitely many others
according to various proportions! As I said, I initially brought this up—in [9]—only to have a
visualizable counterpart to the type of entanglement represented by the facts of life for prime
numbers; I did this in my original formulation of these thoughts as a birthday greeting for my
friend Po’s 80-th birthday!

In the conference for PO’s 80-th birthday Jérome Los mentioned to me that he has constructed
(unpublished as of yet) a dynamical system in S3 whose closed orbits run through all knot types.
So one might sharpen one’s quest by insisting that the knots in the Cebotarev arrangements (as
formulated above) all be closed orbits of some globally defined dynamical system.

As I understand it, Los has a spin-construction that realizes many elements in the braid group. It
begins with a self-mapping of the disc f : D2 → D2 which is used to patch the top and bottom of
D2× [0, 1] together to get a solid torus T which is then imbedded in the natural way in S3 to finish
up with an appropriate dynamical system on S3 . This dynamical system has the property that
going “one circuit” through T effects the mapping f ; hence following through n contiguous circuits
effect the n-th iterate of f . Of course, one can consider a version of this spin-construction of Los for
any topological automorphism f of any connected 2-manifold M2 that has finitely many periodic
points of any specific period, but infinitely many periodic point in all. For any such self-map, form
the 3-manifold M2 × [0, 1] → M3 obtained by attaching the ‘bottom’ M2 × {0} of M2 × [0, 1] to
the ‘top’ M2 × {1} via the mapping f and viewing the periodic orbits of the dynamical system
f : M2 → M2 as an interesting collection of knots nicely organized by period (or equivalently, by
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length). If f has a fixed point m ∈M2 one has the further option of taking m as base point, killing
the loop [0, 1] × {m} ⊂ M3 by the adjunction of a thickened two-disc and viewing the preceding
collection of knots as being in the 3-manifold N3 obtained from M3 by the corresponding surgery12.

One can formulate analogous conditions regarding dynamical systems in more general, or different,
contexts. As Curt McMullen explained to me—and see his [5]—beautiful ‘Cebotarev examples’
can be gotten by considering the collection of knots given by closed geodesics for pseudo-Anososov
flows in the spherical tangent bundles of hyperbolic surfaces.
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