The conjectures of Gan, Gross, and Prasad

Benedict H. Gross

UCSD

December 15, 2020

Wee Teck Gan and Dipendra Prasad

There are three (related) conjectures.

There are three (related) conjectures.

- The local case, which extends branching laws for the representations of compact Lie groups.

There are three (related) conjectures.

- The local case, which extends branching laws for the representations of compact Lie groups.
- The global case, which extends a formula of Jean-Loup Waldspurger.

There are three (related) conjectures.

- The local case, which extends branching laws for the representations of compact Lie groups.
- The global case, which extends a formula of Jean-Loup Waldspurger.
- The arithmetic case, which extends a formula I found with Don Zagier.

There are three (related) conjectures.

- The local case, which extends branching laws for the representations of compact Lie groups.
- The global case, which extends a formula of Jean-Loup Waldspurger.
- The arithmetic case, which extends a formula I found with Don Zagier.

For the precise conjectures, see volume 346 of Astérisque.

Spherical harmonics gives a decomposition of the functions on the 2-sphere

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}
$$

as a representation of the special orthogonal group $\mathrm{SO}(3)$.

Spherical harmonics gives a decomposition of the functions on the 2-sphere

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}
$$

as a representation of the special orthogonal group $\mathrm{SO}(3)$.
Let W_{ℓ} be the vector space of homogeneous polynomials $f(x, y, z)$ degree ℓ which are harmonic on \mathbb{R}^{3}

$$
\Delta(f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0
$$

Spherical harmonics gives a decomposition of the functions on the 2-sphere

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}
$$

as a representation of the special orthogonal group $\mathrm{SO}(3)$.
Let W_{ℓ} be the vector space of homogeneous polynomials $f(x, y, z)$ degree ℓ which are harmonic on \mathbb{R}^{3}

$$
\Delta(f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0
$$

Then W_{ℓ} is an irreducible representation of $\mathrm{SO}(3)$ of dimension $2 \ell+1$, and

$$
\mathscr{F}\left(S^{2}\right)=\hat{\bigoplus}_{\ell \geq 0} W_{\ell}
$$

The subgroup of $\mathrm{SO}(3)$ which fixes a point on S^{2} is isomorphic to the rotation group $\mathrm{SO}(2)$

The subgroup of SO (3) which fixes a point on S^{2} is isomorphic to the rotation group $\mathrm{SO}(2)$

The restriction of W_{ℓ} decomposes as a sum of one-dimensional representations

$$
\operatorname{Res}_{\mathrm{SO}(2)} W_{\ell}=\bigoplus_{|m| \leq \ell} \chi_{m} \quad \chi_{m}(z)=z^{m}
$$

There is a similar result for the restriction of irreducible representations W of the compact Lie group $\operatorname{SO}(2 n+1)$ to the subgroup $\mathrm{SO}(2 n)$.

There is a similar result for the restriction of irreducible representations W of the compact Lie group $\operatorname{SO}(2 n+1)$ to the subgroup $\mathrm{SO}(2 n)$.
The irreducible representations W_{α} of $\mathrm{SO}(2 n+1)$ are indexed by half-integers $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ which satisfy

$$
\alpha_{1}>\alpha_{2}>\ldots>\alpha_{n}>0
$$

There is a similar result for the restriction of irreducible representations W of the compact Lie group $\operatorname{SO}(2 n+1)$ to the subgroup $\mathrm{SO}(2 n)$.
The irreducible representations W_{α} of $\mathrm{SO}(2 n+1)$ are indexed by half-integers $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ which satisfy

$$
\alpha_{1}>\alpha_{2}>\ldots>\alpha_{n}>0
$$

For $\mathrm{SO}(3), \operatorname{dim} W_{\alpha}=2 \alpha$.

There is a similar result for the restriction of irreducible representations W of the compact Lie group $\operatorname{SO}(2 n+1)$ to the subgroup $\mathrm{SO}(2 n)$.
The irreducible representations W_{α} of $\mathrm{SO}(2 n+1)$ are indexed by half-integers $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ which satisfy

$$
\alpha_{1}>\alpha_{2}>\ldots>\alpha_{n}>0
$$

For SO(3), $\operatorname{dim} W_{\alpha}=2 \alpha$.
The irreducible representations U_{β} of $\mathrm{SO}(2 n)$ are indexed by integers $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ which satisfy

$$
\beta_{1}>\beta_{2}>\ldots>\left|\beta_{n}\right|
$$

There is a similar result for the restriction of irreducible representations W of the compact Lie group $\operatorname{SO}(2 n+1)$ to the subgroup $\mathrm{SO}(2 n)$.
The irreducible representations W_{α} of $\mathrm{SO}(2 n+1)$ are indexed by half-integers $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ which satisfy

$$
\alpha_{1}>\alpha_{2}>\ldots>\alpha_{n}>0
$$

For SO(3), $\operatorname{dim} W_{\alpha}=2 \alpha$.
The irreducible representations U_{β} of $\mathrm{SO}(2 n)$ are indexed by integers $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ which satisfy

$$
\beta_{1}>\beta_{2}>\ldots>\left|\beta_{n}\right|
$$

The restriction is given by the branching formula

$$
\operatorname{Res}_{\mathrm{SO}(2 n)} W_{\alpha}=\bigoplus U_{\beta} \quad \alpha_{1}>\beta_{1}>\alpha_{2}>\beta_{2}>\ldots \alpha_{n}>\left|\beta_{n}\right|
$$

Since the restriction is multiplicity-free
$\operatorname{dim}_{\operatorname{Hom}_{\mathrm{SO}(2 n)}}(U, W)=\operatorname{dim}_{\operatorname{Hom}}^{\mathrm{SO}(2 n)}\left(W \otimes U^{\vee}, \mathbb{C}\right) \leq 1$ for all irreducibles W of $\mathrm{SO}(2 n+1)$ and U of $\mathrm{SO}(2 n)$.

Since the restriction is multiplicity-free

$$
\operatorname{dim}_{\operatorname{Hom}_{\mathrm{SO}(2 n)}}(U, W)=\operatorname{dim}_{\operatorname{Hom}_{\mathrm{SO}(2 n)}}\left(W \otimes U^{\vee}, \mathbb{C}\right) \leq 1
$$

for all irreducibles W of $S O(2 n+1)$ and U of $\mathrm{SO}(2 n)$.
The non-compact group $\operatorname{SO}(2 n, 1)$ has a discrete series representation V_{α} whose restriction to the subgroup $\mathrm{SO}(2 n)$ is given by the branching formula
$\operatorname{Res}_{S O(2 n)} V_{\alpha}=\hat{\bigoplus} U_{\beta} \quad \beta_{1}>\alpha_{1}>\beta_{2}>\alpha_{2}>\ldots>\left|\beta_{n}\right|>\alpha_{n}$.

Since the restriction is multiplicity-free

$$
\operatorname{dim}_{\operatorname{Hom}_{\mathrm{SO}(2 n)}}(U, W)=\operatorname{dim}_{\operatorname{Hom}_{\mathrm{SO}(2 n)}}\left(W \otimes U^{\vee}, \mathbb{C}\right) \leq 1
$$

for all irreducibles W of $S O(2 n+1)$ and U of $\mathrm{SO}(2 n)$.
The non-compact group $\operatorname{SO}(2 n, 1)$ has a discrete series representation V_{α} whose restriction to the subgroup $\mathrm{SO}(2 n)$ is given by the branching formula

$$
\operatorname{Res}_{\mathrm{SO}(2 n)} V_{\alpha}=\hat{\bigoplus} U_{\beta} \quad \beta_{1}>\alpha_{1}>\beta_{2}>\alpha_{2}>\ldots>\left|\beta_{n}\right|>\alpha_{n}
$$

For every irreducible representation W of the special orthogonal group $\mathrm{SO}_{2 n+1}(k)$, where k is a local field, the restriction to the subgroup $\mathrm{SO}_{2 n}(k)$ is multiplicity-free.

Since the restriction is multiplicity-free

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{SO}(2 n)}(U, W)=\operatorname{dim} \operatorname{Hom}_{\mathrm{SO}(2 n)}\left(W \otimes U^{\vee}, \mathbb{C}\right) \leq 1
$$

for all irreducibles W of $S O(2 n+1)$ and U of $S O(2 n)$.
The non-compact group $\mathrm{SO}(2 n, 1)$ has a discrete series representation V_{α} whose restriction to the subgroup $\mathrm{SO}(2 n)$ is given by the branching formula

$$
\operatorname{Res}_{\mathrm{SO}(2 n)} V_{\alpha}=\hat{\bigoplus} U_{\beta} \quad \beta_{1}>\alpha_{1}>\beta_{2}>\alpha_{2}>\ldots>\left|\beta_{n}\right|>\alpha_{n} .
$$

For every irreducible representation W of the special orthogonal group $\mathrm{SO}_{2 n+1}(k)$, where k is a local field, the restriction to the subgroup $\mathrm{SO}_{2 n}(k)$ is multiplicity-free.
The local conjecture addresses the question: what is the corresponding branching formula?

To answer that question, we need to leave the harmonic analysis in Pierre Laplace's Méchanique Céleste,

TRAITE

D E
MÉCANIQUE CÉLESTE,

PAHP. S. LAPLACE,
Membre de IIastitut national ile Framee, et da Buresu
des Lomgitudes.

TOMESBCOND.

DE L'HPRTMERIE DE CRAPBLET
A PARIS

pasi da Aagutimu
A K V1t.

and turn to the harmonic analysis in John Tate's PhD thesis.

Fourier Analysis in Number Fields and Hecke's Zeta-Functions \dagger

J. T. Tate

1. Introduction 306
1.1. Relevant History 306
1.2. "This Thesis 306
1.3. "Prerequisites" 307
2. The Local Theory 308
2.1. Introduction 308
2.2. Additive Characters and Measure $\quad . \quad$. . 308
2.3. Multiplicative Characters and Measure * . . . 311
3. The Local
3.1. Introduction 322
3.1. Introduction 322
3.2. Character 324
4. The Theory in the Large :. 327
4.1. Additive Theory . . 327
4.2. Riemann-Roch Theorem 331
4.2. Riemann-Roch Theorem 331
4.3. Multiplicative Theory The ζ-functions; Functional Equation ${ }^{\text {a }}$: : $\quad 334$
4.4. The ζ-functions; Functional Equation 338

A Few Comments on Recent Related Literature (Jan. 1967) . . 346
References 347

Abstract

We lay the foundations for abstract analysis in the groups of valuation vectors and idèles associated with a number field. This allows us to replace the classical notion of ζ-function, as the sum over integral ideals of a certain type of ideal character, by the corresponding notion for ideles, namely, the integral over the idele group of a rather general weight function times an idele character which is trivial an field elements. The role of Hecke's complicated theta-formulas for theta functions formed over a lattice in the n-dimensional space of classical number theory can be played by a simple Poisson formula

Hecke's zeta functions generalize the Riemann zeta function, which satisfies the functional equation

$$
\zeta^{*}(s)=(\pi)^{-s / 2} \Gamma(s / 2) \prod\left(1-p^{-s}\right)^{-1}=\zeta^{*}(1-s)
$$

Hecke's zeta functions generalize the Riemann zeta function, which satisfies the functional equation

$$
\zeta^{*}(s)=(\pi)^{-s / 2} \Gamma(s / 2) \prod\left(1-p^{-s}\right)^{-1}=\zeta^{*}(1-s)
$$

Let k be a number field, with ring of adeles $\mathbb{A}=\prod_{A_{v}} k_{v}$ and group of ideles $\mathbb{A}^{*}=\prod_{A_{v}^{*}} k_{v}^{*}$.

Hecke's zeta functions generalize the Riemann zeta function, which satisfies the functional equation

$$
\zeta^{*}(s)=(\pi)^{-s / 2} \Gamma(s / 2) \prod\left(1-p^{-s}\right)^{-1}=\zeta^{*}(1-s)
$$

Let k be a number field, with ring of adeles $\mathbb{A}=\prod_{A_{v}} k_{v}$ and group of ideles $\mathbb{A}^{*}=\prod_{A_{v}^{*}} k_{v}^{*}$.
A Hecke character is a continuous homomorphism

$$
\chi=\prod \chi_{v}: \mathbb{A}^{*} / k^{*} \longrightarrow \mathbb{C}^{*}
$$

Hecke's zeta functions generalize the Riemann zeta function, which satisfies the functional equation

$$
\zeta^{*}(s)=(\pi)^{-s / 2} \Gamma(s / 2) \prod\left(1-p^{-s}\right)^{-1}=\zeta^{*}(1-s)
$$

Let k be a number field, with ring of adeles $\mathbb{A}=\prod_{A_{v}} k_{v}$ and group of ideles $\mathbb{A}^{*}=\prod_{A_{v}^{*}} k_{v}^{*}$.
A Hecke character is a continuous homomorphism

$$
\chi=\prod \chi_{v}: \mathbb{A}^{*} / k^{*} \longrightarrow \mathbb{C}^{*}
$$

The L-function of χ is defined as an Euler product of local terms

$$
L(\chi, s)=\prod L\left(\chi_{v}, s\right)
$$

which converges in a right half plane.

Tate gave a new proof of Hecke's analytic continuation and functional equation

$$
L(\chi, s)=\epsilon(\chi) A(\chi)^{1 / 2-s} L(\bar{\chi}, 1-s)
$$

and factored the constant $\epsilon(\chi)$ into local terms

$$
\epsilon(\chi)=\prod_{v} \epsilon\left(\chi_{v}\right)
$$

Tate gave a new proof of Hecke's analytic continuation and functional equation

$$
L(\chi, s)=\epsilon(\chi) A(\chi)^{1 / 2-s} L(\bar{\chi}, 1-s)
$$

and factored the constant $\epsilon(\chi)$ into local terms

$$
\epsilon(\chi)=\prod_{v} \epsilon\left(\chi_{v}\right)
$$

The local terms satisfy

$$
\epsilon\left(\chi_{v}\right) \epsilon\left(\bar{\chi}_{v}\right)=\chi_{v}(-1)
$$

Tate gave a new proof of Hecke's analytic continuation and functional equation

$$
L(\chi, s)=\epsilon(\chi) A(\chi)^{1 / 2-s} L(\bar{\chi}, 1-s)
$$

and factored the constant $\epsilon(\chi)$ into local terms

$$
\epsilon(\chi)=\prod_{v} \epsilon\left(\chi_{v}\right) .
$$

The local terms satisfy

$$
\epsilon\left(\chi_{v}\right) \epsilon\left(\bar{\chi}_{v}\right)=\chi_{v}(-1)
$$

Via local class field theory, the characters $\chi_{v}: k_{v}^{*} \rightarrow \mathbb{C}^{*}$ give one dimensional representations of the Weil group $W\left(k_{v}\right)$.

Tate gave a new proof of Hecke's analytic continuation and functional equation

$$
L(\chi, s)=\epsilon(\chi) A(\chi)^{1 / 2-s} L(\bar{\chi}, 1-s)
$$

and factored the constant $\epsilon(\chi)$ into local terms

$$
\epsilon(\chi)=\prod_{v} \epsilon\left(\chi_{v}\right) .
$$

The local terms satisfy

$$
\epsilon\left(\chi_{v}\right) \epsilon\left(\bar{\chi}_{v}\right)=\chi_{v}(-1) .
$$

Via local class field theory, the characters $\chi_{v}: k_{v}^{*} \rightarrow \mathbb{C}^{*}$ give one dimensional representations of the Weil group $W\left(k_{v}\right)$.

$$
W(\mathbb{C})=\mathbb{C}^{*} \quad W(\mathbb{R})=N\left(\mathbb{C}^{*}\right) \subset \mathbb{H}^{*} \quad W\left(k_{v}\right) \subset \operatorname{Gal}\left(\bar{k}_{v} / k_{v}\right) .
$$

Deligne defined local epsilon factors for higher dimensional representations M_{V} of the Weil group, which satisfy

$$
\epsilon\left(M_{v}\right) \epsilon\left(M_{v}^{\vee}\right)=\operatorname{det} M_{v}(-1)
$$

Deligne defined local epsilon factors for higher dimensional representations M_{V} of the Weil group, which satisfy

$$
\epsilon\left(M_{v}\right) \epsilon\left(M_{v}^{\vee}\right)=\operatorname{det} M_{v}(-1)
$$

If M_{v} is self-dual and has trivial determinant, then $\epsilon\left(M_{v}\right)= \pm 1$.

Deligne defined local epsilon factors for higher dimensional representations M_{V} of the Weil group, which satisfy

$$
\epsilon\left(M_{v}\right) \epsilon\left(M_{v}^{\vee}\right)=\operatorname{det} M_{v}(-1)
$$

If M_{v} is self-dual and has trivial determinant, then $\epsilon\left(M_{v}\right)= \pm 1$. In the orthogonal case, the sign $\epsilon\left(M_{V}\right)$ determines whether the representation

$$
W\left(k_{v}\right) \rightarrow \mathrm{SO}\left(M_{v}\right)
$$

lifts to the double cover $\operatorname{Spin}\left(M_{v}\right)$.

Deligne defined local epsilon factors for higher dimensional representations M_{V} of the Weil group, which satisfy

$$
\epsilon\left(M_{v}\right) \epsilon\left(M_{v}^{\vee}\right)=\operatorname{det} M_{v}(-1)
$$

If M_{v} is self-dual and has trivial determinant, then $\epsilon\left(M_{v}\right)= \pm 1$. In the orthogonal case, the sign $\epsilon\left(M_{V}\right)$ determines whether the representation

$$
W\left(k_{v}\right) \rightarrow \mathrm{SO}\left(M_{v}\right)
$$

lifts to the double cover $\operatorname{Spin}\left(M_{v}\right)$.
For symplectic representations, the sign $\epsilon\left(M_{v}\right)$ is more mysterious.

Deligne defined local epsilon factors for higher dimensional representations M_{v} of the Weil group, which satisfy

$$
\epsilon\left(M_{v}\right) \epsilon\left(M_{v}^{\vee}\right)=\operatorname{det} M_{v}(-1)
$$

If M_{v} is self-dual and has trivial determinant, then $\epsilon\left(M_{v}\right)= \pm 1$. In the orthogonal case, the sign $\epsilon\left(M_{V}\right)$ determines whether the representation

$$
W\left(k_{v}\right) \rightarrow \mathrm{SO}\left(M_{v}\right)
$$

lifts to the double cover $\operatorname{Spin}\left(M_{V}\right)$.
For symplectic representations, the sign $\epsilon\left(M_{v}\right)$ is more mysterious.
The local GGP conjecture relates the branching laws from $\mathrm{SO}_{2 n+1}\left(k_{v}\right)$ to $\mathrm{SO}_{2 n}\left(k_{v}\right)$ to the signs of symplectic epsilon factors.

We will use a bridge between representation theory and number theory which was constructed by Robert Langlands.

Langlands conjectured that irreducible representations of the group $\mathrm{SO}_{2 n+1}\left(k_{v}\right)$ are parametrized by symplectic representations

$$
W\left(k_{v}\right) \rightarrow \operatorname{Sp}(M) \quad \operatorname{dim}(M)=2 n
$$

Langlands conjectured that irreducible representations of the group $\mathrm{SO}_{2 n+1}\left(k_{v}\right)$ are parametrized by symplectic representations

$$
W\left(k_{v}\right) \rightarrow \operatorname{Sp}(M) \quad \operatorname{dim}(M)=2 n .
$$

Similarly, irreducible representations of the group $\mathrm{SO}_{2 n}\left(k_{v}\right)=\mathrm{SO}(V)$ are parametrized by orthogonal representations

$$
W\left(k_{v}\right) \rightarrow O(N) \quad \operatorname{dim}(N)=2 n \quad \operatorname{det}(N)=\operatorname{disc}(V) .
$$

Langlands conjectured that irreducible representations of the group $\mathrm{SO}_{2 n+1}\left(k_{v}\right)$ are parametrized by symplectic representations

$$
W\left(k_{v}\right) \rightarrow \operatorname{Sp}(M) \quad \operatorname{dim}(M)=2 n .
$$

Similarly, irreducible representations of the group $\mathrm{SO}_{2 n}\left(k_{v}\right)=\mathrm{SO}(V)$ are parametrized by orthogonal representations

$$
W\left(k_{v}\right) \rightarrow O(N) \quad \operatorname{dim}(N)=2 n \quad \operatorname{det}(N)=\operatorname{disc}(V) .
$$

Define the representation $J(a)=\operatorname{Ind}_{\mathbb{C}^{*}}(z / \bar{z})^{a}$ of $W(\mathbb{R})$.

Langlands conjectured that irreducible representations of the group $\mathrm{SO}_{2 n+1}\left(K_{v}\right)$ are parametrized by symplectic representations

$$
W\left(k_{v}\right) \rightarrow \operatorname{Sp}(M) \quad \operatorname{dim}(M)=2 n .
$$

Similarly, irreducible representations of the group $\mathrm{SO}_{2 n}\left(k_{v}\right)=\mathrm{SO}(V)$ are parametrized by orthogonal representations

$$
W\left(k_{v}\right) \rightarrow O(N) \quad \operatorname{dim}(N)=2 n \quad \operatorname{det}(N)=\operatorname{disc}(V) .
$$

Define the representation $J(a)=\operatorname{Ind}_{\mathbb{C}^{*}}(z / \bar{z})^{a}$ of $W(\mathbb{R})$.
The parameter of the irreducible representation W_{α} of $\mathrm{SO}(2 n+1)$ is the symplectic representation

$$
M=J\left(\alpha_{1}\right) \oplus J\left(\alpha_{2}\right) \oplus \ldots \oplus J\left(\alpha_{n}\right)
$$

and the parameter of the irreducible representation U_{β} of $\mathrm{SO}(2 n)$ is the orthogonal representation

$$
N=J\left(\beta_{1}\right) \oplus J\left(\beta_{2}\right) \oplus \ldots \oplus J\left(\beta_{n}\right) .
$$

In fact, the representations M and N of $W\left(k_{v}\right)$ parametrize a finite set of irreducible representations, called an L-packet.

In fact, the representations M and N of $W\left(k_{v}\right)$ parametrize a finite set of irreducible representations, called an L-packet.

The elements of the L-packet are indexed by irreducible representations ψ of the component group $C_{M} \times C_{N}$ of the centralizer of $W\left(k_{v}\right)$ in $\operatorname{Sp}(M) \times \operatorname{SO}(N)$, which is an elementary abelian 2-group.

In fact, the representations M and N of $W\left(k_{v}\right)$ parametrize a finite set of irreducible representations, called an L-packet.

The elements of the L-packet are indexed by irreducible representations ψ of the component group $C_{M} \times C_{N}$ of the centralizer of $W\left(k_{v}\right)$ in $\operatorname{Sp}(M) \times \operatorname{SO}(N)$, which is an elementary abelian 2-group.

The local GGP conjecture states that there is a unique irreducible representation $W \otimes U$ in each generic L-packet with

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{SO}_{2 n}}(W \otimes U, \mathbb{C})=1
$$

whose character is given by

$$
\begin{aligned}
& \psi(a, 1)=\epsilon\left(M^{a=-1} \otimes N\right) \times \operatorname{det} N(-1)^{\operatorname{dim} M^{a=-1} / 2} \\
& \psi(1, b)=\epsilon\left(M \otimes N^{b=-1}\right) \times \operatorname{det} N^{b=-1}(-1)^{\operatorname{dim} M / 2}
\end{aligned}
$$

In particular, on the center of $\operatorname{Sp}(M) \times \mathrm{SO}(N)$:

$$
\psi(-1,1)=\psi(1,-1)=\epsilon(M \otimes N) \operatorname{det} N(-1)^{\operatorname{dim} M / 2} .
$$

This determines the Hasse-Witt symbol of the relevant orthogonal spaces.

In particular, on the center of $\operatorname{Sp}(M) \times \mathrm{SO}(N)$:

$$
\psi(-1,1)=\psi(1,-1)=\epsilon(M \otimes N) \operatorname{det} N(-1)^{\operatorname{dim} M / 2}
$$

This determines the Hasse-Witt symbol of the relevant orthogonal spaces.

For discrete series L-packets of real orthogonal groups, the epsilon factors are determined by the branching of the infinitesimal characters.

In particular, on the center of $\operatorname{Sp}(M) \times \mathrm{SO}(N)$:

$$
\psi(-1,1)=\psi(1,-1)=\epsilon(M \otimes N) \operatorname{det} N(-1)^{\operatorname{dim} M / 2}
$$

This determines the Hasse-Witt symbol of the relevant orthogonal spaces.

For discrete series L-packets of real orthogonal groups, the epsilon factors are determined by the branching of the infinitesimal characters.

The local conjecture for p-adic orthogonal groups was proved by Waldspurger in 2010.

In particular, on the center of $\operatorname{Sp}(M) \times \mathrm{SO}(N)$:

$$
\psi(-1,1)=\psi(1,-1)=\epsilon(M \otimes N) \operatorname{det} N(-1)^{\operatorname{dim} M / 2}
$$

This determines the Hasse-Witt symbol of the relevant orthogonal spaces.

For discrete series L-packets of real orthogonal groups, the epsilon factors are determined by the branching of the infinitesimal characters.

The local conjecture for p-adic orthogonal groups was proved by Waldspurger in 2010.

His papers have led to an explosion of research in the subject.

In particular, on the center of $\operatorname{Sp}(M) \times \mathrm{SO}(N)$:

$$
\psi(-1,1)=\psi(1,-1)=\epsilon(M \otimes N) \operatorname{det} N(-1)^{\operatorname{dim} M / 2}
$$

This determines the Hasse-Witt symbol of the relevant orthogonal spaces.

For discrete series L-packets of real orthogonal groups, the epsilon factors are determined by the branching of the infinitesimal characters.

The local conjecture for p-adic orthogonal groups was proved by Waldspurger in 2010.
His papers have led to an explosion of research in the subject.
We now turn to the global conjecture.

Let k be a number field, let $G=\mathrm{SO}_{2 n+1} \times \mathrm{SO}_{2 n}$ over k, and let $H=\mathrm{SO}_{2 n}$ be the subgroup diagonally embedded in G.

Let k be a number field, let $G=\mathrm{SO}_{2 n+1} \times \mathrm{SO}_{2 n}$ over k, and let $H=\mathrm{SO}_{2 n}$ be the subgroup diagonally embedded in G.

Let \mathbb{A} be the ring of adeles of k and let $W \otimes U=\Pi\left(W_{v} \otimes U_{v}\right)$ be a tempered irreducible representation of $G(\mathbb{A})$ which embeds in the space of automorphic forms

$$
W \otimes U \hookrightarrow \mathscr{F}(G(k) \backslash G(\mathbb{A}))
$$

Let k be a number field, let $G=\mathrm{SO}_{2 n+1} \times \mathrm{SO}_{2 n}$ over k, and let $H=\mathrm{SO}_{2 n}$ be the subgroup diagonally embedded in G.

Let \mathbb{A} be the ring of adeles of k and let $W \otimes U=\Pi\left(W_{v} \otimes U_{v}\right)$ be a tempered irreducible representation of $G(\mathbb{A})$ which embeds in the space of automorphic forms

$$
W \otimes U \hookrightarrow \mathscr{F}(G(k) \backslash G(\mathbb{A})) .
$$

Integrating automorphic forms over the coset space $H(k) \backslash H(\mathbb{A})$ gives a linear form $\mathscr{F} \rightarrow \mathbb{C}$ which is invariant under $H(\mathbb{A})$

Let k be a number field, let $G=\mathrm{SO}_{2 n+1} \times \mathrm{SO}_{2 n}$ over k, and let $H=\mathrm{SO}_{2 n}$ be the subgroup diagonally embedded in G.

Let \mathbb{A} be the ring of adeles of k and let $W \otimes U=\Pi\left(W_{v} \otimes U_{v}\right)$ be a tempered irreducible representation of $G(\mathbb{A})$ which embeds in the space of automorphic forms

$$
W \otimes U \hookrightarrow \mathscr{F}(G(k) \backslash G(\mathbb{A})) .
$$

Integrating automorphic forms over the coset space $H(k) \backslash H(\mathbb{A})$ gives a linear form $\mathscr{F} \rightarrow \mathbb{C}$ which is invariant under $H(\mathbb{A})$
When is this linear form non-zero on the image of $W \otimes U$?

Let k be a number field, let $G=\mathrm{SO}_{2 n+1} \times \mathrm{SO}_{2 n}$ over k, and let $H=\mathrm{SO}_{2 n}$ be the subgroup diagonally embedded in G.

Let \mathbb{A} be the ring of adeles of k and let $W \otimes U=\Pi\left(W_{v} \otimes U_{v}\right)$ be a tempered irreducible representation of $G(\mathbb{A})$ which embeds in the space of automorphic forms

$$
W \otimes U \hookrightarrow \mathscr{F}(G(k) \backslash G(\mathbb{A})) .
$$

Integrating automorphic forms over the coset space $H(k) \backslash H(\mathbb{A})$ gives a linear form $\mathscr{F} \rightarrow \mathbb{C}$ which is invariant under $H(\mathbb{A})$
When is this linear form non-zero on the image of $W \otimes U$?
An obvious necessary condition is

$$
\operatorname{Hom}_{H(\mathbb{A})}(W \otimes U, \mathbb{C})=\prod \operatorname{dim}_{H\left(k_{v}\right)}\left(W_{v} \otimes U_{v}, \mathbb{C}\right) \neq 0
$$

so the local components are distinguished in their L-packets.

The Hasse-Witt invariant of the local orthogonal spaces, for the groups acting on $W_{v} \otimes U_{v}$ is related to

$$
\epsilon_{v}(M \otimes N) . \operatorname{det} N_{v}(-1)^{\operatorname{dim} M_{v} / 2} .
$$

The Hasse-Witt invariant of the local orthogonal spaces, for the groups acting on $W_{v} \otimes U_{v}$ is related to

$$
\epsilon_{V}(M \otimes N) \cdot \operatorname{det} N_{v}(-1)^{\operatorname{dim} M_{v} / 2}
$$

Since we have global orthogonal spaces, Hilbert's reciprocity law implies that

$$
\prod \epsilon_{V}(M \otimes N)=+1
$$

The Hasse-Witt invariant of the local orthogonal spaces, for the groups acting on $W_{v} \otimes U_{v}$ is related to

$$
\epsilon_{V}(M \otimes N) \cdot \operatorname{det} N_{v}(-1)^{\operatorname{dim} M_{v} / 2}
$$

Since we have global orthogonal spaces, Hilbert's reciprocity law implies that

$$
\prod \epsilon_{V}(M \otimes N)=+1
$$

This is the $\operatorname{sign} \epsilon(M \otimes N)$ in the functional equation of the tensor product L-function

$$
L(M \otimes N, s)=\prod_{v} L_{v}(M \otimes N, s)
$$

The Hasse-Witt invariant of the local orthogonal spaces, for the groups acting on $W_{v} \otimes U_{v}$ is related to

$$
\epsilon_{v}(M \otimes N) \cdot \operatorname{det} N_{v}(-1)^{\operatorname{dim} M_{v} / 2}
$$

Since we have global orthogonal spaces, Hilbert's reciprocity law implies that

$$
\prod \epsilon_{V}(M \otimes N)=+1
$$

This is the sign $\epsilon(M \otimes N)$ in the functional equation of the tensor product L-function

$$
L(M \otimes N, s)=\prod_{v} L_{v}(M \otimes N, s) .
$$

Hence $L(M \otimes N, s)$ vanishes to even order at the point $s=1 / 2$.

The Hasse-Witt invariant of the local orthogonal spaces, for the groups acting on $W_{v} \otimes U_{v}$ is related to

$$
\epsilon_{V}(M \otimes N) \cdot \operatorname{det} N_{v}(-1)^{\operatorname{dim} M_{v} / 2}
$$

Since we have global orthogonal spaces, Hilbert's reciprocity law implies that

$$
\prod \epsilon_{V}(M \otimes N)=+1
$$

This is the sign $\epsilon(M \otimes N)$ in the functional equation of the tensor product L-function

$$
L(M \otimes N, s)=\prod_{v} L_{v}(M \otimes N, s) .
$$

Hence $L(M \otimes N, s)$ vanishes to even order at the point $s=1 / 2$.
The global conjecture predicts that the diagonal period integral is non-zero on $W \otimes U$ if and only if

$$
L(M \otimes N, 1 / 2) \neq 0
$$

There is a similar conjecture for the diagonal period of automorphic representations of $U_{n} \times U_{n-1}$.

There is a similar conjecture for the diagonal period of automorphic representations of $U_{n} \times U_{n-1}$.

Here the tensor product L-function is a Rankin L-function for $G L_{n} \times \mathrm{GL}_{n-1}$ over the quadratic extension field.

There is a similar conjecture for the diagonal period of automorphic representations of $U_{n} \times U_{n-1}$.

Here the tensor product L-function is a Rankin L-function for $\mathrm{GL}_{n} \times \mathrm{GL}_{n-1}$ over the quadratic extension field.
Wei Zhang has made tremendous progress in the unitary case, using a relative trace formula of Jacquet and Rallis.

There is a similar conjecture for the diagonal period of automorphic representations of $U_{n} \times U_{n-1}$.
Here the tensor product L-function is a Rankin L-function for $\mathrm{GL}_{n} \times \mathrm{GL}_{n-1}$ over the quadratic extension field.
Wei Zhang has made tremendous progress in the unitary case, using a relative trace formula of Jacquet and Rallis.

The arithmetic GGP conjecture concerns the first derivative

$$
L^{\prime}(M \otimes N, 1 / 2)
$$

when $\epsilon(M \otimes N)=-1$.

The arithmetic GGP conjecture concerns the first derivative

$$
L^{\prime}(M \otimes N, 1 / 2)
$$

when $\epsilon(M \otimes N)=-1$. The order of vanishing at $s=1 / 2$ is odd.

The arithmetic GGP conjecture concerns the first derivative

$$
L^{\prime}(M \otimes N, 1 / 2)
$$

when $\epsilon(M \otimes N)=-1$. The order of vanishing at $s=1 / 2$ is odd. In this case, the adelic group $\mathrm{SO}_{2 n+1}(\mathbb{A}) \times \mathrm{SO}_{2 n}(\mathbb{A})$ which acts on the representation $W \otimes U$ does not come from a pair of orthogonal spaces over k, so there is no space of automorphic forms.

The arithmetic GGP conjecture concerns the first derivative

$$
L^{\prime}(M \otimes N, 1 / 2)
$$

when $\epsilon(M \otimes N)=-1$. The order of vanishing at $s=1 / 2$ is odd. In this case, the adelic group $\mathrm{SO}_{2 n+1}(\mathbb{A}) \times \mathrm{SO}_{2 n}(\mathbb{A})$ which acts on the representation $W \otimes U$ does not come from a pair of orthogonal spaces over k, so there is no space of automorphic forms.

We only have a conjecture when the infinite component

$$
\prod_{v \mid \infty} \mathrm{SO}_{2 n+1}\left(k_{v}\right) \times \mathrm{SO}_{2 n}\left(k_{v}\right)
$$

of this adelic group is compact.

The arithmetic GGP conjecture concerns the first derivative

$$
L^{\prime}(M \otimes N, 1 / 2)
$$

when $\epsilon(M \otimes N)=-1$. The order of vanishing at $s=1 / 2$ is odd. In this case, the adelic group $\mathrm{SO}_{2 n+1}(\mathbb{A}) \times \mathrm{SO}_{2 n}(\mathbb{A})$ which acts on the representation $W \otimes U$ does not come from a pair of orthogonal spaces over k, so there is no space of automorphic forms.

We only have a conjecture when the infinite component

$$
\prod_{v \mid \infty} \mathrm{SO}_{2 n+1}\left(k_{v}\right) \times \mathrm{SO}_{2 n}\left(k_{v}\right)
$$

of this adelic group is compact.
Then the number field k is totally real.

For simplicity, assume that $W_{v} \otimes U_{v}$ is the trivial representation, for all real places v of k.

For simplicity, assume that $W_{v} \otimes U_{v}$ is the trivial representation, for all real places v of k.
Then the representation

$$
W^{f} \otimes U^{f} \text { of } \mathrm{SO}_{2 n+1}\left(\mathbb{A}^{f}\right) \times \mathrm{SO}_{2 n}\left(\mathbb{A}^{f}\right)
$$

occurs in the middle cohomology of a Shimura variety $S=T_{2 n-1} \times T_{2 n-2}$, which has a canonical model over k.

For simplicity, assume that $W_{v} \otimes U_{v}$ is the trivial representation, for all real places v of k.

Then the representation

$$
W^{f} \otimes U^{f} \text { of } \mathrm{SO}_{2 n+1}\left(\mathbb{A}^{f}\right) \times \mathrm{SO}_{2 n}\left(\mathbb{A}^{f}\right)
$$

occurs in the middle cohomology of a Shimura variety $S=T_{2 n-1} \times T_{2 n-2}$, which has a canonical model over k.
The representation $W^{f} \otimes U^{f}$ should also occur in the Chow group of homologically trivial cycles of codimension $2 n-1$ on Sover k.

For simplicity, assume that $W_{v} \otimes U_{v}$ is the trivial representation, for all real places v of k.

Then the representation

$$
W^{f} \otimes U^{f} \text { of } \mathrm{SO}_{2 n+1}\left(\mathbb{A}^{f}\right) \times \mathrm{SO}_{2 n}\left(\mathbb{A}^{f}\right)
$$

occurs in the middle cohomology of a Shimura variety $S=T_{2 n-1} \times T_{2 n-2}$, which has a canonical model over k.
The representation $W^{f} \otimes U^{f}$ should also occur in the Chow group of homologically trivial cycles of codimension $2 n-1$ on S over k.

One can make such a cycle from the diagonally embedding Shimura variety $T=T_{2 n-2}$. The height pairing $\langle T, *\rangle$ on the Chow group gives an $\mathrm{SO}_{2 n}\left(\mathbb{A}^{f}\right)$ invariant linear form.

The arithmetic conjecture states that the following are equivalent

- the linear form $\langle T, *\rangle$ is non-zero on the $W^{f} \otimes U^{f}$ component of the Chow group

The arithmetic conjecture states that the following are equivalent

- the linear form $\langle T, *\rangle$ is non-zero on the $W^{f} \otimes U^{f}$ component of the Chow group
- $L^{\prime}(M \otimes N, 1 / 2) \neq 0$

The arithmetic conjecture states that the following are equivalent

- the linear form $\langle T, *\rangle$ is non-zero on the $W^{f} \otimes U^{f}$ component of the Chow group
- $L^{\prime}(M \otimes N, 1 / 2) \neq 0$
- the representation $W^{f} \otimes U^{f}$ occurs with multiplicity one in the Chow group

The arithmetic conjecture states that the following are equivalent

- the linear form $\langle T, *\rangle$ is non-zero on the $W^{f} \otimes U^{f}$ component of the Chow group
- $L^{\prime}(M \otimes N, 1 / 2) \neq 0$
- the representation $W^{f} \otimes U^{f}$ occurs with multiplicity one in the Chow group
There is refinement, giving an exact formula for the derivative $L^{\prime}(M \otimes N, 1 / 2)$ in terms of the height of this component of T.

The arithmetic conjecture states that the following are equivalent

- the linear form $\langle T, *\rangle$ is non-zero on the $W^{f} \otimes U^{f}$ component of the Chow group
- $L^{\prime}(M \otimes N, 1 / 2) \neq 0$
- the representation $W^{f} \otimes U^{f}$ occurs with multiplicity one in the Chow group
There is refinement, giving an exact formula for the derivative $L^{\prime}(M \otimes N, 1 / 2)$ in terms of the height of this component of T.
When S is a curve, the Chow group is the Mordell-Weil group of its Jacobian. The exact formula was established by Shouwu Zhang and his students in 2013.

The arithmetic conjecture states that the following are equivalent

- the linear form $\langle T, *\rangle$ is non-zero on the $W^{f} \otimes U^{f}$ component of the Chow group
- $L^{\prime}(M \otimes N, 1 / 2) \neq 0$
- the representation $W^{f} \otimes U^{f}$ occurs with multiplicity one in the Chow group
There is refinement, giving an exact formula for the derivative $L^{\prime}(M \otimes N, 1 / 2)$ in terms of the height of this component of T.
When S is a curve, the Chow group is the Mordell-Weil group of its Jacobian. The exact formula was established by Shouwu Zhang and his students in 2013.

When $n=1, k=\mathbb{Q}$, and the group $\mathrm{SO}_{3}\left(\mathbb{A}^{f}\right)$ is split, S is the modular curve $X_{0}(N)$ and the cycle T is given by Heegner points, which are rational over the Hilbert class field of $K=\mathbb{Q}(\sqrt{-D})$.

When $n=1, k=\mathbb{Q}$, and the group $\mathrm{SO}_{3}\left(\mathbb{A}^{f}\right)$ is split, S is the modular curve $X_{0}(N)$ and the cycle T is given by Heegner points, which are rational over the Hilbert class field of $K=\mathbb{Q}(\sqrt{-D})$.
Mapping the conjugate points of T to an elliptic curve quotient $X_{0}(N) \rightarrow E$ and summing up, we get a point P in $E(K)$.

When $n=1, k=\mathbb{Q}$, and the group $\mathrm{SO}_{3}\left(\mathbb{A}^{f}\right)$ is split, S is the modular curve $X_{0}(N)$ and the cycle T is given by Heegner points, which are rational over the Hilbert class field of $K=\mathbb{Q}(\sqrt{-D})$.
Mapping the conjugate points of T to an elliptic curve quotient $X_{0}(N) \rightarrow E$ and summing up, we get a point P in $E(K)$.

$$
L^{\prime}(E / K, 1)=\int_{E(\mathbb{C})} \omega \wedge \bar{\omega} \cdot \hat{h}(P) / \sqrt{D} .
$$

When $n=1, k=\mathbb{Q}$, and the group $\mathrm{SO}_{3}\left(\mathbb{A}^{f}\right)$ is split, S is the modular curve $X_{0}(N)$ and the cycle T is given by Heegner points, which are rational over the Hilbert class field of $K=\mathbb{Q}(\sqrt{-D})$.
Mapping the conjugate points of T to an elliptic curve quotient $X_{0}(N) \rightarrow E$ and summing up, we get a point P in $E(K)$.

$$
L^{\prime}(E / K, 1)=\int_{E(\mathbb{C})} \omega \wedge \bar{\omega} \cdot \hat{h}(P) / \sqrt{D} .
$$

When P has infinite order, Victor Kolyvagin proved that $E(K)$ has rank 1.

Inventiones mathematicae
Q) Springer-Verlag 1986

Heegner points and derivatives of L-series

Benedict H. Gross ${ }^{1}$ and Don B. Zagier ${ }^{2}$
Department of Matbematics, Brown University, Providence. RIO2912. USA
Department of Matbematics, Brown University, Providence. RI O2912, USA
Department of Mathematics, University of Maryland, Colleeke Park, MD 20742, USA and Max. Planck Institut fir Mathematik, Gottiried-Cluren Strase 26, D-5300 Bonn 3.
Federal Republic of Germany
to John Tate

Table of Contents

1. Introduction aed statement of resulis
2. The curve $X_{0}(\mathbb{N})$ over \mathbb{Q}
3. Automorphisims and correspondences
4. Lecean and ponists global heights
5. Losal and
. The main result
Applicarians to elliptic cince
6. Application to the class number problem of Gaus 9. The plan of proof
7. Archimedeas local heighes

Archimed dan local heights

1. The curve $X_{0}(N)$ over \mathbb{C}
2. Archimedean beighs for $X_{0}(\mathcal{N})$
3. Evaluation of the function $G_{\bar{N}, ~ \text { at }}$ Hecegaer points
. Final formulat for the heipht $\left(v_{0}(m)=-1\right)$
4. Non-archinnedean local beizhts

The carve $X_{0}(\mathcal{N})$ over Z
2. Homomosphisms
4. An intersection formula
5. The divisor $T_{\text {a }} Y^{\text {b }}$

Deformations and intersections
Quatertionic formula
8. Modifiations uthen $\frac{1}{2}(m)+0$

Explicit quatemion algetras
N. Derivatives of Rankin L-series at the center of the critical strip

Rankin's method
Computation of the trac
4. Functional equation; prelimisary formulae for $i_{s}(f, k)$ and $L,(f, k)$
5. Holomorphic progection and fina formulac for $L_{\alpha}\left(f, H\right.$ and $L_{d}(f, k, k>1$
a. The case $k=1$: final formula for $L_{\alpha}(f, 1)$

SUR LES VALEURS DE CERTAINES FONCTIONS L AUTOMORPHES EN LEUR CENTRE DE SYMETRIE

J-L. Waldspurger

Il y a quelques années, Vignéras a démontré le résultat suivant. Soit f une forme modulaire holomorphe parabolique de poids k pair, de caractere orme modulaire holomorphe parabolique de poids k pair, de caractere
rivial, pour un groupe de congruence $\Gamma_{0}(N)$. On suppose que f est une irivial, pour un groupe de congruence $I_{0}(N)$. On suppose que f est une newform. Pour un nombre premier p, soit a, la valeur propre de
'opérateur de Hecke T_{p} associee a f. Notons $\mathbf{Q}_{(}(f)$ le sous-corps de \mathbf{C} engendré par les a_{p}. Cest une extension finie de \mathbf{Q}. Soient χ un caractère de Dirichlet quadratique, de conducteur premier a N, et tel que $\chi(-1)=1$ et f^{\prime} la newform telle que. pour presque tout p, f^{\prime} soit propre pour 'opérateur de Hecke T_{p}, de valeur propre $x(p) a_{p}$. Notons $L(f, s)$ $L\left(f^{\prime}, s\right)$, les fonctions L habituelles associeces a f^{\prime} et f^{\prime}, supposon $(f, k / 2) \neq 0, L\left(f^{\prime}, k / 2\right) \neq 0$. Alors, à un facteur explicite prés, apport $L\left(f^{\prime}, k / 2\right) L(f, k / 2)^{-1}$ est le carré d'un elément de $\mathbf{Q}(f)$ ($V /$) Pour démontrer ce resultat, Vigneras exprimait ces valeurs de fonctions L demi-entier. On dèmontre ici ce méme résultat, sous une forme plus générale, par une méthode tout-à-fait différente. Soient F un corps de nombres, M une algèbre de quaternions définie
sur F, G le groupe de ses elements inversibles. E^{\prime} un sosumodule
ireductible de l'espace des formes automorphes paraboliques sur $G(F)$ ireductible de l'espace des formes automorphes paraboliques sur $G(F)$ \} $\sigma($ A $)$ (cf. ci-dessous notations et II,1), π^{\prime} la representation automorphe do $\mathrm{GL}_{2}(\mathbf{A})$ associee à π^{\prime} par la correspondance de Jacquet-Langlands, T un $G L_{2}(\mathbf{A})$ associee à " par la correspondance de Jacquet-Langlands, T un
sous-tore maximal de G défini sur F, F_{T} lextension quadratique de F ssociée ì T, Ω un caracterine de $T(F) \backslash T(\mathbf{A})$ colincidant avec ω sur ic centre $Z(\mathbf{A})$ de $G(\mathbf{A})$. Il la representation automorphe de $\mathrm{CL}_{2}\left(F_{T}(\mathbf{A})\right.$ qui releve π (ct. notations). On peut considérer Ω comme un caractére do $F_{F}^{*}(A)$. et definir la fonction $L\left(\Pi \otimes \Omega^{-1}, s\right)$. Soit $e^{\prime} \in E^{\prime}$, considérons 'intégrale
\qquad $e^{\prime}(t) \Omega^{-1}(t) \mathrm{d} t$.
e point fondamental est de montrer que (grosso modo) le carre de cette itegrale est tgale au produit de trois termes: un terme indèpendant de

For more information on what happened next, see "The Road to GGP"
http://people.math.harvard.edu/~gross/eprints.html

For more information on what happened next, see "The Road to GGP"
http://people.math.harvard.edu/~gross/eprints.html
Thank you!

