The conjectures of Gan, Gross, and Prasad

Benedict H. Gross

UCSD

December 15, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Wee Teck Gan and Dipendra Prasad

The local case, which extends branching laws for the representations of compact Lie groups.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The local case, which extends branching laws for the representations of compact Lie groups.
- The global case, which extends a formula of Jean-Loup Waldspurger.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The local case, which extends branching laws for the representations of compact Lie groups.
- The global case, which extends a formula of Jean-Loup Waldspurger.
- The arithmetic case, which extends a formula I found with Don Zagier.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- The local case, which extends branching laws for the representations of compact Lie groups.
- The global case, which extends a formula of Jean-Loup Waldspurger.
- The arithmetic case, which extends a formula I found with Don Zagier.

(ロ) (同) (三) (三) (三) (三) (○) (○)

For the precise conjectures, see volume 346 of Astérisque.

|▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへで

Spherical harmonics gives a decomposition of the functions on the 2-sphere

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

as a representation of the special orthogonal group SO(3).

Spherical harmonics gives a decomposition of the functions on the 2-sphere

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

as a representation of the special orthogonal group SO(3).

Let W_{ℓ} be the vector space of homogeneous polynomials f(x, y, z) degree ℓ which are harmonic on \mathbb{R}^3

$$\Delta(f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Spherical harmonics gives a decomposition of the functions on the 2-sphere

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

as a representation of the special orthogonal group SO(3).

Let W_{ℓ} be the vector space of homogeneous polynomials f(x, y, z) degree ℓ which are harmonic on \mathbb{R}^3

$$\Delta(f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0.$$

Then W_{ℓ} is an irreducible representation of SO(3) of dimension $2\ell + 1$, and

$$\mathscr{F}(S^2) = \bigoplus_{\ell \ge 0} W_\ell$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The subgroup of SO(3) which fixes a point on S^2 is isomorphic to the rotation group SO(2)

The subgroup of SO(3) which fixes a point on S^2 is isomorphic to the rotation group SO(2)

The restriction of W_{ℓ} decomposes as a sum of one-dimensional representations

$$\operatorname{Res}_{\mathrm{SO}(2)} W_{\ell} = \bigoplus_{|m| \leq \ell} \chi_m \qquad \chi_m(z) = z^m.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

The irreducible representations W_{α} of SO(2*n* + 1) are indexed by half-integers ($\alpha_1, \alpha_2, \ldots, \alpha_n$) which satisfy

 $\alpha_1 > \alpha_2 > \ldots > \alpha_n > 0.$

(ロ) (同) (三) (三) (三) (三) (○) (○)

The irreducible representations W_{α} of SO(2*n* + 1) are indexed by half-integers ($\alpha_1, \alpha_2, \ldots, \alpha_n$) which satisfy

$$\alpha_1 > \alpha_2 > \ldots > \alpha_n > 0.$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

For SO(3), dim $W_{\alpha} = 2\alpha$.

The irreducible representations W_{α} of SO(2*n* + 1) are indexed by half-integers ($\alpha_1, \alpha_2, \ldots, \alpha_n$) which satisfy

$$\alpha_1 > \alpha_2 > \ldots > \alpha_n > 0.$$

For SO(3), dim $W_{\alpha} = 2\alpha$.

The irreducible representations U_{β} of SO(2*n*) are indexed by integers ($\beta_1, \beta_2, ..., \beta_n$) which satisfy

$$\beta_1 > \beta_2 > \ldots > |\beta_n|$$

A D F A 同 F A E F A E F A Q A

The irreducible representations W_{α} of SO(2*n* + 1) are indexed by half-integers ($\alpha_1, \alpha_2, \ldots, \alpha_n$) which satisfy

$$\alpha_1 > \alpha_2 > \ldots > \alpha_n > 0.$$

For SO(3), dim $W_{\alpha} = 2\alpha$.

The irreducible representations U_{β} of SO(2*n*) are indexed by integers ($\beta_1, \beta_2, ..., \beta_n$) which satisfy

$$\beta_1 > \beta_2 > \ldots > |\beta_n|$$

The restriction is given by the branching formula

$$\operatorname{Res}_{\operatorname{SO}(2n)} W_{\alpha} = \bigoplus U_{\beta} \qquad \alpha_1 > \beta_1 > \alpha_2 > \beta_2 > \ldots \alpha_n > |\beta_n|.$$

A D F A 同 F A E F A E F A Q A

dim Hom_{SO(2n)}(U, W) = dim Hom_{SO(2n)} $(W \otimes U^{\vee}, \mathbb{C}) \leq 1$

for all irreducibles W of SO(2n + 1) and U of SO(2n).

 $\dim \operatorname{Hom}_{\operatorname{SO}(2n)}(U,W) = \dim \operatorname{Hom}_{\operatorname{SO}(2n)}(W \otimes U^{\vee},\mathbb{C}) \leq 1$

for all irreducibles W of SO(2n + 1) and U of SO(2n).

The non-compact group SO(2n, 1) has a discrete series representation V_{α} whose restriction to the subgroup SO(2n) is given by the branching formula

$$\operatorname{Res}_{\operatorname{SO}(2n)} V_{\alpha} = \bigoplus U_{\beta} \qquad \beta_1 > \alpha_1 > \beta_2 > \alpha_2 > \ldots > |\beta_n| > \alpha_n.$$

 $\dim \operatorname{Hom}_{\operatorname{SO}(2n)}(U,W) = \dim \operatorname{Hom}_{\operatorname{SO}(2n)}(W \otimes U^{\vee},\mathbb{C}) \leq 1$

for all irreducibles W of SO(2n + 1) and U of SO(2n).

The non-compact group SO(2*n*, 1) has a discrete series representation V_{α} whose restriction to the subgroup SO(2*n*) is given by the branching formula

$$\operatorname{Res}_{\operatorname{SO}(2n)} V_{\alpha} = \bigoplus U_{\beta} \qquad \beta_1 > \alpha_1 > \beta_2 > \alpha_2 > \ldots > |\beta_n| > \alpha_n.$$

For every irreducible representation W of the special orthogonal group $SO_{2n+1}(k)$, where k is a local field, the restriction to the subgroup $SO_{2n}(k)$ is **multiplicity-free**.

 $\dim \operatorname{Hom}_{\operatorname{SO}(2n)}(U,W) = \dim \operatorname{Hom}_{\operatorname{SO}(2n)}(W \otimes U^{\vee},\mathbb{C}) \leq 1$

for all irreducibles W of SO(2n + 1) and U of SO(2n).

The non-compact group SO(2*n*, 1) has a discrete series representation V_{α} whose restriction to the subgroup SO(2*n*) is given by the branching formula

$$\operatorname{Res}_{\operatorname{SO}(2n)} V_{\alpha} = \bigoplus U_{\beta} \qquad \beta_1 > \alpha_1 > \beta_2 > \alpha_2 > \ldots > |\beta_n| > \alpha_n.$$

For every irreducible representation W of the special orthogonal group $SO_{2n+1}(k)$, where k is a local field, the restriction to the subgroup $SO_{2n}(k)$ is **multiplicity-free**.

The local conjecture addresses the question: what is the corresponding branching formula?

To answer that question, we need to leave the harmonic analysis in Pierre Laplace's Méchanique Céleste,

TRAITÉ DE MÉCANIQUE CÉLESTE, PAR P. S. LAPLACE. Membre de l'Institut national de France, et du Bureau des Longitudes. TOME SECOND. DE L'IMPRIMERIE DE CRAPELET. A PARIS, Cher J. B. M. DUPBAT, Libraire pour les Mathématiques. quai des Augustina AN VIL

▲□▶▲□▶▲□▶▲□▶ □ のQ@

and turn to the harmonic analysis in John Tate's PhD thesis.

Fourier Analysis in Number Fields and Hecke's Zeta-Functions†

J. T. TATE

1.	Intro	duction .										306		
	1.1.	Relevant Histo	orv									306		
	1.2.	This Thesis										306		
	13	"Prerequisitee	· ·	•			•				•	207		
2	The	Cond Theory		•	•	•	•	•	•	•	•	200		
44	2.1	Introduction	•	•		•	•	•	•	•	•	200		
	2.1.	Addition Chan	· · · · · · · · · · · · · · · · · · ·	1	÷			•	•	•	•	200		
	4.4.	Additive Char	acters	and p	aeasu	re						308		
	2.3.	Multiplicative	Chara	cters :	and M	leasur	e					311		
	2.4.	The Local ζ-fu	inction	; Fun	ctiona	il Equ	ation					313		
	2.5.	Computation (of $\rho(c)$	by St	recial	ζ-fund	ctions					316		
3.	Abst	ract Restricted	Direct	Prod	uct							322		
	3.1.	Introduction										322		
	3.2.	Characters									2	324		
	3.3.	Measure										325		
4.	The '	Theory in the L	arge									327		
	41	Additive Theo	nu l							-		227		
	4.2	Dismon Des	- Thu.	· · · · · ·							· .	221		
	4.4.	Riemann-Roc	n Ince	леш	•	•	•	•	•	•	•	221		
	4.3.	Multiplicative	Theor	У								334		
	4.4.	The ζ-function	s; Fur	action	al Equ	ation						338		
	4.5.	Comparison w	ith the	Class	sical J	Theory								
A Few Comments on Recent Related Literature (Jan. 1967)												346		
References									·	•	•	247		
1/61	erence	a		•				•			•	547		

Abstract

We lay the foundations for abstract analysis in the groups of valuation vectors and kidles associated with a number field. This allows us to replace the classical notion of *C*-functions, as the sum over integral ideals of a certain type of ideal character, by the corresponding notion for ideals, manely, the integral over the kidle group of a rather general weight function times an ideal character which is trivial on field elements. The role of Pace's complicated theta-formulas for theta functions formed over a lattice in the *n*-dimensional space of classical number theory can be played by a simple Poission formula

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$\zeta^*(s) = (\pi)^{-s/2} \Gamma(s/2) \prod (1 - p^{-s})^{-1} = \zeta^*(1 - s)$$

(ロ)、

$$\zeta^*(s) = (\pi)^{-s/2} \Gamma(s/2) \prod (1 - p^{-s})^{-1} = \zeta^*(1 - s)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let *k* be a number field, with ring of adeles $\mathbb{A} = \prod_{A_v} k_v$ and group of ideles $\mathbb{A}^* = \prod_{A_v^*} k_v^*$.

$$\zeta^*(s) = (\pi)^{-s/2} \Gamma(s/2) \prod (1 - p^{-s})^{-1} = \zeta^*(1 - s)$$

Let *k* be a number field, with ring of adeles $\mathbb{A} = \prod_{A_v} k_v$ and group of ideles $\mathbb{A}^* = \prod_{A_v^*} k_v^*$.

A Hecke character is a continuous homomorphism

$$\chi = \prod \chi_{\mathbf{V}} : \mathbb{A}^* / \mathbf{k}^* \longrightarrow \mathbb{C}^*$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\zeta^*(s) = (\pi)^{-s/2} \Gamma(s/2) \prod (1 - p^{-s})^{-1} = \zeta^*(1 - s)$$

Let *k* be a number field, with ring of adeles $\mathbb{A} = \prod_{A_v} k_v$ and group of ideles $\mathbb{A}^* = \prod_{A_v^*} k_v^*$.

A Hecke character is a continuous homomorphism

$$\chi = \prod \chi_{\mathbf{v}} : \mathbb{A}^* / \mathbf{k}^* \longrightarrow \mathbb{C}^*$$

The *L*-function of χ is defined as an Euler product of local terms

$$L(\chi, \boldsymbol{s}) = \prod L(\chi_{\boldsymbol{v}}, \boldsymbol{s})$$

(日) (日) (日) (日) (日) (日) (日)

which converges in a right half plane.

$$L(\chi, \boldsymbol{s}) = \epsilon(\chi) \boldsymbol{A}(\chi)^{1/2-\boldsymbol{s}} L(\bar{\chi}, 1-\boldsymbol{s})$$

and factored the constant $\epsilon(\chi)$ into local terms

$$\epsilon(\chi) = \prod_{\nu} \epsilon(\chi_{\nu}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$L(\chi, \boldsymbol{s}) = \epsilon(\chi) A(\chi)^{1/2-s} L(\bar{\chi}, 1-s)$$

and factored the constant $\epsilon(\chi)$ into local terms

$$\epsilon(\chi) = \prod_{\nu} \epsilon(\chi_{\nu}).$$

The local terms satisfy

$$\epsilon(\chi_{\nu})\epsilon(\bar{\chi}_{\nu})=\chi_{\nu}(-1).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$L(\chi, \boldsymbol{s}) = \epsilon(\chi) A(\chi)^{1/2-s} L(\bar{\chi}, 1-s)$$

and factored the constant $\epsilon(\chi)$ into local terms

$$\epsilon(\chi) = \prod_{\nu} \epsilon(\chi_{\nu}).$$

The local terms satisfy

$$\epsilon(\chi_{\nu})\epsilon(\bar{\chi}_{\nu}) = \chi_{\nu}(-1).$$

Via local class field theory, the characters $\chi_{\nu} : k_{\nu}^* \to \mathbb{C}^*$ give one dimensional representations of the Weil group $W(k_{\nu})$.

$$L(\chi, \boldsymbol{s}) = \epsilon(\chi) A(\chi)^{1/2-s} L(\bar{\chi}, 1-s)$$

and factored the constant $\epsilon(\chi)$ into local terms

$$\epsilon(\chi) = \prod_{\nu} \epsilon(\chi_{\nu}).$$

The local terms satisfy

$$\epsilon(\chi_{\nu})\epsilon(\bar{\chi}_{\nu}) = \chi_{\nu}(-1).$$

Via local class field theory, the characters $\chi_{\nu} : k_{\nu}^* \to \mathbb{C}^*$ give one dimensional representations of the Weil group $W(k_{\nu})$.

$$W(\mathbb{C}) = \mathbb{C}^* \quad W(\mathbb{R}) = N(\mathbb{C}^*) \subset \mathbb{H}^* \quad W(k_{\nu}) \subset \operatorname{Gal}(\bar{k}_{\nu}/k_{\nu}).$$

 $\epsilon(M_{\nu})\epsilon(M_{\nu}^{\vee}) = \det M_{\nu}(-1).$

$$\epsilon(M_{\nu})\epsilon(M_{\nu}^{\vee}) = \det M_{\nu}(-1).$$

If M_v is self-dual and has trivial determinant, then $\epsilon(M_v) = \pm 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\epsilon(M_{\nu})\epsilon(M_{\nu}^{\vee}) = \det M_{\nu}(-1).$

If M_v is self-dual and has trivial determinant, then $\epsilon(M_v) = \pm 1$.

In the orthogonal case, the sign $\epsilon(M_{\nu})$ determines whether the representation

$$W(k_v)
ightarrow {
m SO}(M_v)$$

lifts to the double cover $Spin(M_v)$.

 $\epsilon(M_{\nu})\epsilon(M_{\nu}^{\vee}) = \det M_{\nu}(-1).$

If M_v is self-dual and has trivial determinant, then $\epsilon(M_v) = \pm 1$.

In the orthogonal case, the sign $\epsilon(M_{\nu})$ determines whether the representation

$$W(k_v)
ightarrow \mathrm{SO}(M_v)$$

lifts to the double cover $Spin(M_v)$.

For symplectic representations, the sign $\epsilon(M_v)$ is more mysterious.
Deligne defined local epsilon factors for higher dimensional representations M_v of the Weil group, which satisfy

 $\epsilon(M_{\nu})\epsilon(M_{\nu}^{\vee}) = \det M_{\nu}(-1).$

If M_v is self-dual and has trivial determinant, then $\epsilon(M_v) = \pm 1$.

In the orthogonal case, the sign $\epsilon(M_{\nu})$ determines whether the representation

$$W(k_v)
ightarrow \mathrm{SO}(M_v)$$

lifts to the double cover $Spin(M_v)$.

For symplectic representations, the sign $\epsilon(M_v)$ is more mysterious.

The local GGP conjecture relates the **branching laws** from $SO_{2n+1}(k_v)$ to $SO_{2n}(k_v)$ to the signs of **symplectic epsilon** factors.

We will use a bridge between representation theory and number theory which was constructed by Robert Langlands.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$W(k_v) \rightarrow \operatorname{Sp}(M) \quad \dim(M) = 2n.$$

$$W(k_v) \rightarrow \operatorname{Sp}(M) \quad \dim(M) = 2n.$$

Similarly, irreducible representations of the group $SO_{2n}(k_v) = SO(V)$ are parametrized by orthogonal representations

$$W(k_{\nu}) \rightarrow O(N) \qquad \dim(N) = 2n \quad \det(N) = \operatorname{disc}(V).$$

(ロ) (同) (三) (三) (三) (○) (○)

$$W(k_v) \to \operatorname{Sp}(M) \quad \dim(M) = 2n.$$

Similarly, irreducible representations of the group $SO_{2n}(k_v) = SO(V)$ are parametrized by orthogonal representations

$$W(k_{\nu}) \rightarrow O(N) \qquad \dim(N) = 2n \quad \det(N) = \operatorname{disc}(V).$$

(ロ) (同) (三) (三) (三) (○) (○)

Define the representation $J(a) = \operatorname{Ind}_{\mathbb{C}^*}(z/\overline{z})^a$ of $W(\mathbb{R})$.

$$W(k_v) \to \operatorname{Sp}(M) \quad \dim(M) = 2n.$$

Similarly, irreducible representations of the group $SO_{2n}(k_v) = SO(V)$ are parametrized by orthogonal representations

$$W(k_{\nu}) \rightarrow O(N) \qquad \dim(N) = 2n \quad \det(N) = \operatorname{disc}(V).$$

Define the representation $J(a) = \operatorname{Ind}_{\mathbb{C}^*}(z/\overline{z})^a$ of $W(\mathbb{R})$.

The parameter of the irreducible representation W_{α} of SO(2*n* + 1) is the symplectic representation

$$M = J(\alpha_1) \oplus J(\alpha_2) \oplus \ldots \oplus J(\alpha_n)$$

and the parameter of the irreducible representation U_{β} of SO(2*n*) is the orthogonal representation

$$N = J(\beta_1) \oplus J(\beta_2) \oplus \ldots \oplus J(\beta_n).$$

In fact, the representations *M* and *N* of $W(k_v)$ parametrize a **finite set** of irreducible representations, called an L-packet.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

In fact, the representations *M* and *N* of $W(k_v)$ parametrize a **finite set** of irreducible representations, called an L-packet.

The elements of the L-packet are indexed by irreducible representations ψ of the component group $C_M \times C_N$ of the centralizer of $W(k_v)$ in $Sp(M) \times SO(N)$, which is an elementary abelian 2-group.

(ロ) (同) (三) (三) (三) (○) (○)

In fact, the representations *M* and *N* of $W(k_v)$ parametrize a **finite set** of irreducible representations, called an L-packet.

The elements of the L-packet are indexed by irreducible representations ψ of the component group $C_M \times C_N$ of the centralizer of $W(k_v)$ in $Sp(M) \times SO(N)$, which is an elementary abelian 2-group.

The local GGP conjecture states that there is a **unique** irreducible representation $W \otimes U$ in each **generic** *L*-packet with

 $\dim \operatorname{Hom}_{\operatorname{SO}_{2n}}(W \otimes U, \mathbb{C}) = 1$

whose character is given by

$$\psi(\mathbf{a}, \mathbf{1}) = \epsilon(M^{\mathbf{a}=-1} \otimes N) \times \det N(-1)^{\dim M^{\mathbf{a}=-1/2}}$$
$$\psi(\mathbf{1}, b) = \epsilon(M \otimes N^{b=-1}) \times \det N^{b=-1}(-1)^{\dim M/2}$$

$$\psi(-1,1) = \psi(1,-1) = \epsilon(M \otimes N) \det N(-1)^{\dim M/2}$$

This determines the Hasse-Witt symbol of the relevant orthogonal spaces.

$$\psi(-1,1) = \psi(1,-1) = \epsilon(M \otimes N) \det N(-1)^{\dim M/2}$$

This determines the Hasse-Witt symbol of the relevant orthogonal spaces.

For discrete series L-packets of real orthogonal groups, the epsilon factors are determined by the branching of the infinitesimal characters.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\psi(-1,1) = \psi(1,-1) = \epsilon(M \otimes N) \det N(-1)^{\dim M/2}$$
.

This determines the Hasse-Witt symbol of the relevant orthogonal spaces.

For discrete series L-packets of real orthogonal groups, the epsilon factors are determined by the branching of the infinitesimal characters.

The local conjecture for *p*-adic orthogonal groups was proved by Waldspurger in 2010.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$$\psi(-1,1) = \psi(1,-1) = \epsilon(M \otimes N) \det N(-1)^{\dim M/2}$$
.

This determines the Hasse-Witt symbol of the relevant orthogonal spaces.

For discrete series L-packets of real orthogonal groups, the epsilon factors are determined by the branching of the infinitesimal characters.

The local conjecture for *p*-adic orthogonal groups was proved by Waldspurger in 2010.

His papers have led to an explosion of research in the subject.

(ロ) (同) (三) (三) (三) (○) (○)

$$\psi(-1,1) = \psi(1,-1) = \epsilon(M \otimes N) \det N(-1)^{\dim M/2}$$
.

This determines the Hasse-Witt symbol of the relevant orthogonal spaces.

For discrete series L-packets of real orthogonal groups, the epsilon factors are determined by the branching of the infinitesimal characters.

The local conjecture for *p*-adic orthogonal groups was proved by Waldspurger in 2010.

His papers have led to an explosion of research in the subject.

We now turn to the global conjecture.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let \mathbb{A} be the ring of adeles of k and let $W \otimes U = \prod (W_v \otimes U_v)$ be a tempered irreducible representation of $G(\mathbb{A})$ which embeds in the space of automorphic forms

 $W \otimes U \hookrightarrow \mathscr{F}(G(k) \setminus G(\mathbb{A})).$

(ロ) (同) (三) (三) (三) (○) (○)

Let \mathbb{A} be the ring of adeles of k and let $W \otimes U = \prod (W_v \otimes U_v)$ be a tempered irreducible representation of $G(\mathbb{A})$ which embeds in the space of automorphic forms

$$W \otimes U \hookrightarrow \mathscr{F}(G(k) \setminus G(\mathbb{A})).$$

Integrating automorphic forms over the coset space $H(k) \setminus H(\mathbb{A})$ gives a linear form $\mathscr{F} \to \mathbb{C}$ which is invariant under $H(\mathbb{A})$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Let \mathbb{A} be the ring of adeles of k and let $W \otimes U = \prod (W_v \otimes U_v)$ be a tempered irreducible representation of $G(\mathbb{A})$ which embeds in the space of automorphic forms

 $W \otimes U \hookrightarrow \mathscr{F}(G(k) \setminus G(\mathbb{A})).$

Integrating automorphic forms over the coset space $H(k) \setminus H(\mathbb{A})$ gives a linear form $\mathscr{F} \to \mathbb{C}$ which is invariant under $H(\mathbb{A})$

When is this linear form non-zero on the image of $W \otimes U$?

Let \mathbb{A} be the ring of adeles of k and let $W \otimes U = \prod (W_v \otimes U_v)$ be a tempered irreducible representation of $G(\mathbb{A})$ which embeds in the space of automorphic forms

 $W \otimes U \hookrightarrow \mathscr{F}(G(k) \setminus G(\mathbb{A})).$

Integrating automorphic forms over the coset space $H(k) \setminus H(\mathbb{A})$ gives a linear form $\mathscr{F} \to \mathbb{C}$ which is invariant under $H(\mathbb{A})$

When is this linear form non-zero on the image of $W \otimes U$?

An obvious necessary condition is

$$\operatorname{Hom}_{H(\mathbb{A})}(W \otimes U, \mathbb{C}) = \prod \dim_{H(k_{v})}(W_{v} \otimes U_{v}, \mathbb{C}) \neq 0$$

so the local components are distinguished in their *L*-packets.

 $\epsilon_{\nu}(M \otimes N)$. det $N_{\nu}(-1)^{\dim M_{\nu}/2}$.

$$\epsilon_{\nu}(M \otimes N)$$
. det $N_{\nu}(-1)^{\dim M_{\nu}/2}$

Since we have global orthogonal spaces, Hilbert's reciprocity law implies that

$$\prod \epsilon_{\mathbf{V}}(\mathbf{M}\otimes\mathbf{N})=+1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\epsilon_{\nu}(M \otimes N)$$
. det $N_{\nu}(-1)^{\dim M_{\nu}/2}$

Since we have global orthogonal spaces, Hilbert's reciprocity law implies that

$$\prod \epsilon_{\mathbf{V}}(\mathbf{M}\otimes\mathbf{N})=+1$$

This is the sign $\epsilon(M \otimes N)$ in the functional equation of the tensor product *L*-function

$$L(M \otimes N, s) = \prod_{v} L_{v}(M \otimes N, s).$$

(ロ) (同) (三) (三) (三) (○) (○)

$$\epsilon_{\nu}(M \otimes N)$$
. det $N_{\nu}(-1)^{\dim M_{\nu}/2}$

Since we have global orthogonal spaces, Hilbert's reciprocity law implies that

$$\prod \epsilon_{\mathbf{V}}(\mathbf{M}\otimes\mathbf{N})=+1$$

This is the sign $\epsilon(M \otimes N)$ in the functional equation of the tensor product *L*-function

$$L(M \otimes N, s) = \prod_{v} L_{v}(M \otimes N, s).$$

Hence $L(M \otimes N, s)$ vanishes to even order at the point s = 1/2.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

$$\epsilon_{\nu}(M \otimes N)$$
. det $N_{\nu}(-1)^{\dim M_{\nu}/2}$

Since we have global orthogonal spaces, Hilbert's reciprocity law implies that

$$\prod \epsilon_{\mathbf{V}}(\mathbf{M}\otimes\mathbf{N})=+1$$

This is the sign $\epsilon(M \otimes N)$ in the functional equation of the tensor product *L*-function

$$L(M \otimes N, s) = \prod_{v} L_{v}(M \otimes N, s).$$

Hence $L(M \otimes N, s)$ vanishes to even order at the point s = 1/2.

The global conjecture predicts that the diagonal period integral is non-zero on $W \otimes U$ if and only if

$$L(M\otimes N,1/2)\neq 0.$$

Here the tensor product *L*-function is a Rankin *L*-function for $GL_n \times GL_{n-1}$ over the quadratic extension field.

Here the tensor product *L*-function is a Rankin *L*-function for $GL_n \times GL_{n-1}$ over the quadratic extension field.

Wei Zhang has made tremendous progress in the unitary case, using a relative trace formula of Jacquet and Rallis.

(日)

Here the tensor product *L*-function is a Rankin *L*-function for $GL_n \times GL_{n-1}$ over the quadratic extension field.

Wei Zhang has made tremendous progress in the unitary case, using a relative trace formula of Jacquet and Rallis.

 $L'(M \otimes N, 1/2)$

when $\epsilon(M \otimes N) = -1$.

 $L'(M \otimes N, 1/2)$

when $\epsilon(M \otimes N) = -1$. The order of vanishing at s = 1/2 is odd.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $L'(M \otimes N, 1/2)$

when $\epsilon(M \otimes N) = -1$. The order of vanishing at s = 1/2 is odd.

In this case, the adelic group $SO_{2n+1}(\mathbb{A}) \times SO_{2n}(\mathbb{A})$ which acts on the representation $W \otimes U$ does not come from a pair of orthogonal spaces over k, so **there is no space of automorphic forms**.

(ロ) (同) (三) (三) (三) (○) (○)

 $L'(M \otimes N, 1/2)$

when $\epsilon(M \otimes N) = -1$. The order of vanishing at s = 1/2 is odd.

In this case, the adelic group $SO_{2n+1}(\mathbb{A}) \times SO_{2n}(\mathbb{A})$ which acts on the representation $W \otimes U$ does not come from a pair of orthogonal spaces over k, so **there is no space of automorphic forms**.

We only have a conjecture when the infinite component

$$\prod_{\nu|\infty} \mathrm{SO}_{2n+1}(k_{\nu}) \times \mathrm{SO}_{2n}(k_{\nu})$$

of this adelic group is **compact**.

 $L'(M \otimes N, 1/2)$

when $\epsilon(M \otimes N) = -1$. The order of vanishing at s = 1/2 is odd.

In this case, the adelic group $SO_{2n+1}(\mathbb{A}) \times SO_{2n}(\mathbb{A})$ which acts on the representation $W \otimes U$ does not come from a pair of orthogonal spaces over k, so **there is no space of automorphic forms**.

We only have a conjecture when the infinite component

$$\prod_{\nu|\infty} \mathrm{SO}_{2n+1}(k_{\nu}) \times \mathrm{SO}_{2n}(k_{\nu})$$

(ロ) (同) (三) (三) (三) (○) (○)

of this adelic group is **compact**.

Then the number field k is totally real.

For simplicity, assume that $W_v \otimes U_v$ is the **trivial** representation, for all real places *v* of *k*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For simplicity, assume that $W_v \otimes U_v$ is the **trivial** representation, for all real places *v* of *k*.

Then the representation

$$W^{f} \otimes U^{f}$$
 of $SO_{2n+1}(\mathbb{A}^{f}) \times SO_{2n}(\mathbb{A}^{f})$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

occurs in the middle cohomology of a Shimura variety $S = T_{2n-1} \times T_{2n-2}$, which has a canonical model over *k*.

For simplicity, assume that $W_v \otimes U_v$ is the **trivial** representation, for all real places *v* of *k*.

Then the representation

$$W^f \otimes U^f$$
 of $SO_{2n+1}(\mathbb{A}^f) \times SO_{2n}(\mathbb{A}^f)$

occurs in the middle cohomology of a Shimura variety $S = T_{2n-1} \times T_{2n-2}$, which has a canonical model over *k*.

The representation $W^f \otimes U^f$ should also occur in the Chow group of homologically trivial cycles of codimension 2n - 1 on *S* over *k*.

(ロ) (同) (三) (三) (三) (○) (○)
For simplicity, assume that $W_v \otimes U_v$ is the **trivial** representation, for all real places *v* of *k*.

Then the representation

$$W^f \otimes U^f$$
 of $SO_{2n+1}(\mathbb{A}^f) \times SO_{2n}(\mathbb{A}^f)$

occurs in the middle cohomology of a Shimura variety $S = T_{2n-1} \times T_{2n-2}$, which has a canonical model over *k*.

The representation $W^f \otimes U^f$ should also occur in the Chow group of homologically trivial cycles of codimension 2n - 1 on *S* over *k*.

One can make such a cycle from the diagonally embedding Shimura variety $T = T_{2n-2}$. The height pairing $\langle T, * \rangle$ on the Chow group gives an SO_{2n}(\mathbb{A}^{f}) invariant linear form.

► the linear form (*T*, *) is non-zero on the *W^f* ⊗ *U^f* component of the Chow group

► the linear form (*T*, *) is non-zero on the *W^f* ⊗ *U^f* component of the Chow group

•
$$L'(M \otimes N, 1/2) \neq 0$$

- ► the linear form (*T*, *) is non-zero on the *W^f* ⊗ *U^f* component of the Chow group
- $L'(M \otimes N, 1/2) \neq 0$
- the representation $W^f \otimes U^f$ occurs with multiplicity one in the Chow group

・ロト・日本・モト・モー ショー ショー

- ► the linear form (T, *) is non-zero on the W^f ⊗ U^f component of the Chow group
- $L'(M \otimes N, 1/2) \neq 0$
- ► the representation $W^f \otimes U^f$ occurs with multiplicity one in the Chow group

There is refinement, giving an exact formula for the derivative $L'(M \otimes N, 1/2)$ in terms of the height of this component of *T*.

- ► the linear form (T, *) is non-zero on the W^f ⊗ U^f component of the Chow group
- $L'(M \otimes N, 1/2) \neq 0$
- the representation $W^f \otimes U^f$ occurs with multiplicity one in the Chow group

There is refinement, giving an exact formula for the derivative $L'(M \otimes N, 1/2)$ in terms of the height of this component of *T*.

When S is a curve, the Chow group is the Mordell-Weil group of its Jacobian. The exact formula was established by Shouwu Zhang and his students in 2013.

- ► the linear form (*T*, *) is non-zero on the *W^f* ⊗ *U^f* component of the Chow group
- $L'(M \otimes N, 1/2) \neq 0$
- the representation $W^f \otimes U^f$ occurs with multiplicity one in the Chow group

There is refinement, giving an exact formula for the derivative $L'(M \otimes N, 1/2)$ in terms of the height of this component of *T*.

When *S* is a curve, the Chow group is the Mordell-Weil group of its Jacobian. The exact formula was established by Shouwu Zhang and his students in 2013.

When n = 1, $k = \mathbb{Q}$, and the group $SO_3(\mathbb{A}^f)$ is split, *S* is the modular curve $X_0(N)$ and the cycle *T* is given by Heegner points, which are rational over the Hilbert class field of $K = \mathbb{Q}(\sqrt{-D})$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

When n = 1, $k = \mathbb{Q}$, and the group SO₃(\mathbb{A}^{f}) is split, *S* is the modular curve $X_0(N)$ and the cycle *T* is given by Heegner points, which are rational over the Hilbert class field of $K = \mathbb{Q}(\sqrt{-D})$.

Mapping the conjugate points of *T* to an elliptic curve quotient $X_0(N) \rightarrow E$ and summing up, we get a point *P* in E(K).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

When n = 1, $k = \mathbb{Q}$, and the group SO₃(\mathbb{A}^{f}) is split, *S* is the modular curve $X_{0}(N)$ and the cycle *T* is given by Heegner points, which are rational over the Hilbert class field of $K = \mathbb{Q}(\sqrt{-D})$.

Mapping the conjugate points of *T* to an elliptic curve quotient $X_0(N) \rightarrow E$ and summing up, we get a point *P* in E(K).

$$L'(E/K,1) = \int_{E(\mathbb{C})} \omega \wedge \overline{\omega} \cdot \hat{h}(P) / \sqrt{D}.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

When n = 1, $k = \mathbb{Q}$, and the group SO₃(\mathbb{A}^{f}) is split, *S* is the modular curve $X_{0}(N)$ and the cycle *T* is given by Heegner points, which are rational over the Hilbert class field of $K = \mathbb{Q}(\sqrt{-D})$.

Mapping the conjugate points of *T* to an elliptic curve quotient $X_0(N) \rightarrow E$ and summing up, we get a point *P* in E(K).

$$L'(E/K,1) = \int_{E(\mathbb{C})} \omega \wedge \overline{\omega} \cdot \hat{h}(P) / \sqrt{D}.$$

When *P* has infinite order, Victor Kolyvagin proved that E(K) has rank 1.

Invent. math. 84, 225-320 (1986)

Heegner points and derivatives of L-series

Benedict H. Gross¹ and Don B. Zagier²

¹ Department of Mathematics, Brown University, Providence, RI 02912, USA ² Department of Mathematics, University of Maryland, College Park, MD 20742, USA and Max-Planck-Institut for Mathematik, Gorffried-Clasen-Strasse 26, D-5500 Benn 3, Federal Republic of Germany

to John Tate

Table of Contents

L Introductive and statement of results	225
 The curve X_g(N) over Q 	226
2. Automorphisms and correspondences	226
3. Heegner points	227
4. Local and global heights	228
5. L-series	229
6. The main result	230
7. Applications to elliptic curves	230
8. Application to the class number problem of Gauss	231
9. The plan of proof	232
10. Acknowledgements	. 233
II. Archimedean local heights	233
1. The curve X ₄ (N) over C	233
 Archimedean heights for X₀(N) 	236
3. Evaluation of the function G ² _{2,4} at Heegner points	242
 Final formula for the height (r_a(n)=0) 	248
 Modifications when r_a(w) = 0 	249
III. Netwarehimedean local helebre	262
The const X (Nicourt Z	254
2 Homorroumbiens	255
3 Brights and interpretion products	256
4 An intersection formula	247
S The drainer T x"	156
6 Defension tradictory	140
7 Oraternizais formula	261
9 Molfantings where a (a) 40	
9 Emilia materia ability	26.6
· cipici quicini agerai	
IV. Derivatives of Rankin L-series at the center of the critical strip	261
1. Ratkin's method	270
2. Computation of the trace	272
3. Fourier exponsions	172
 Functional equation: preliminary formulae for L₂(f,k) and L₂(f,k) 	282
 Functional equation; preliminary formulae for L_a(f, k) and L_a(f, k)	282

Compositio Mathematica 54 (1985) 173-242. © 1985 Martinus Nilhoff Publishers, Derdrecht, Printed in The Netherlands.

SUR LES VALEURS DE CERTAINES FONCTIONS L AUTOMORPHES EN LEUR CENTRE DE SYMETRIE

J-L. Waldspurger

It is a quipper annex, Vignetza dimensi le résulta soivan. Soni / une forme moduline bodoregle parabolique de robol h qui, de curstella constructional de la constructiona de la constructina de la

Sion *I* yra cerpt do nombers, *M* wa ajghred ei quaternion ddfini ur *F*, *G* IE groupe ei ne effents in irosynthesis, *F* un o somolowich irridocalib de Tropace das formes automptites paraboliques ur (*I*/*F*), 60/14/3 et dotson automation et 11.13 e⁻¹ in protocolica automptites parafold et al. Automation et 11.13 e⁻¹ in protocolica automptites paratical et al. (*I*), *G* and *G*

 $\int_{|T||r||Z(A),|T|A|} e'(r) \Omega^{-1}(r) dr.$

Le point fondamental est de montrer que (grosso modo) le carré de cette intégrale est égale au produit de trois termes: un terme indépendant de T

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For more information on what happened next, see

"The Road to GGP"

http://people.math.harvard.edu/~gross/eprints.html

For more information on what happened next, see

"The Road to GGP"

http://people.math.harvard.edu/~gross/eprints.html

Thank you!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●