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There are three (related) conjectures.

I The local case, which extends branching laws for the
representations of compact Lie groups.

I The global case, which extends a formula of Jean-Loup
Waldspurger.

I The arithmetic case, which extends a formula I found with
Don Zagier.

For the precise conjectures, see volume 346 of Astérisque.
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Spherical harmonics gives a decomposition of the functions on
the 2-sphere

S2 = {(x , y , z) ∈ R3 : x2 + y2 + z2 = 1}

as a representation of the special orthogonal group SO(3).

Let W` be the vector space of homogeneous polynomials
f (x , y , z) degree ` which are harmonic on R3

∆(f ) =
∂2f
∂x2 +

∂2f
∂y2 +

∂2f
∂z2 = 0.

Then W` is an irreducible representation of SO(3) of dimension
2`+ 1, and

F (S2) =
⊕̂

`≥0
W`
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The subgroup of SO(3) which fixes a point on S2 is isomorphic
to the rotation group SO(2)

https://upload.wikimedia.org/wikipedia/commons/d/dd/Sphere_rotat...
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The restriction of W` decomposes as a sum of one-dimensional
representations

ResSO(2) W` =
⊕
|m|≤`

χm χm(z) = zm.
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There is a similar result for the restriction of irreducible
representations W of the compact Lie group SO(2n + 1) to the
subgroup SO(2n).

The irreducible representations Wα of SO(2n + 1) are indexed
by half-integers (α1, α2, . . . , αn) which satisfy

α1 > α2 > . . . > αn > 0.

For SO(3), dim Wα = 2α.

The irreducible representations Uβ of SO(2n) are indexed by
integers (β1, β2, . . . , βn) which satisfy

β1 > β2 > . . . > |βn|

The restriction is given by the branching formula

ResSO(2n) Wα =
⊕

Uβ α1 > β1 > α2 > β2 > . . . αn > |βn|.
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Since the restriction is multiplicity-free

dim HomSO(2n)(U,W ) = dim HomSO(2n)(W ⊗ U∨,C) ≤ 1

for all irreducibles W of SO(2n + 1) and U of SO(2n).

The non-compact group SO(2n,1) has a discrete series
representation Vα whose restriction to the subgroup SO(2n) is
given by the branching formula

ResSO(2n) Vα =
⊕̂

Uβ β1 > α1 > β2 > α2 > . . . > |βn| > αn.

For every irreducible representation W of the special
orthogonal group SO2n+1(k), where k is a local field, the
restriction to the subgroup SO2n(k) is multiplicity-free.

The local conjecture addresses the question: what is the
corresponding branching formula?
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To answer that question, we need to leave the harmonic
analysis in Pierre Laplace’s Méchanique Céleste,
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and turn to the harmonic analysis in John Tate’s PhD thesis.



Hecke’s zeta functions generalize the Riemann zeta function,
which satisfies the functional equation

ζ∗(s) = (π)−s/2Γ(s/2)
∏

(1− p−s)−1 = ζ∗(1− s)

Let k be a number field, with ring of adeles A =
∏

Av
kv and

group of ideles A∗ =
∏

A∗
v

k∗v .

A Hecke character is a continuous homomorphism

χ =
∏

χv : A∗/k∗ −→ C∗

The L-function of χ is defined as an Euler product of local terms

L(χ, s) =
∏

L(χv , s)

which converges in a right half plane.
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Tate gave a new proof of Hecke’s analytic continuation and
functional equation

L(χ, s) = ε(χ) A(χ)1/2−s L(χ̄,1− s)

and factored the constant ε(χ) into local terms

ε(χ) =
∏

v

ε(χv ).

The local terms satisfy

ε(χv )ε(χ̄v ) = χv (−1).

Via local class field theory, the characters χv : k∗v → C∗ give
one dimensional representations of the Weil group W (kv ).

W (C) = C∗ W (R) = N(C∗) ⊂ H∗ W (kv ) ⊂ Gal(k̄v/kv ).
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Deligne defined local epsilon factors for higher dimensional
representations Mv of the Weil group, which satisfy

ε(Mv )ε(M∨v ) = det Mv (−1).

If Mv is self-dual and has trivial determinant, then ε(Mv ) = ±1.

In the orthogonal case, the sign ε(Mv ) determines whether the
representation

W (kv )→ SO(Mv )

lifts to the double cover Spin(Mv ).

For symplectic representations, the sign ε(Mv ) is more
mysterious.

The local GGP conjecture relates the branching laws from
SO2n+1(kv ) to SO2n(kv ) to the signs of symplectic epsilon
factors.
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We will use a bridge between representation theory and
number theory which was constructed by Robert Langlands.
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Langlands conjectured that irreducible representations of the
group SO2n+1(kv ) are parametrized by symplectic
representations

W (kv )→ Sp(M) dim(M) = 2n.

Similarly, irreducible representations of the group
SO2n(kv ) = SO(V ) are parametrized by orthogonal
representations

W (kv )→ O(N) dim(N) = 2n det(N) = disc(V ).

Define the representation J(a) = IndC∗(z/z̄)a of W (R).

The parameter of the irreducible representation Wα of
SO(2n + 1) is the symplectic representation

M = J(α1)⊕ J(α2)⊕ . . .⊕ J(αn)

and the parameter of the irreducible representation Uβ of
SO(2n) is the orthogonal representation

N = J(β1)⊕ J(β2)⊕ . . .⊕ J(βn).
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In fact, the representations M and N of W (kv ) parametrize a
finite set of irreducible representations, called an L-packet.

The elements of the L-packet are indexed by irreducible
representations ψ of the component group CM × CN of the
centralizer of W (kv ) in Sp(M)× SO(N), which is an elementary
abelian 2-group.

The local GGP conjecture states that there is a unique
irreducible representation W ⊗U in each generic L-packet with

dim HomSO2n (W ⊗ U,C) = 1

whose character is given by

ψ(a,1) = ε(Ma=−1 ⊗ N)× det N(−1)dimMa=−1/2

ψ(1,b) = ε(M ⊗ Nb=−1)× det Nb=−1(−1)dimM/2
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In particular, on the center of Sp(M)× SO(N):

ψ(−1,1) = ψ(1,−1) = ε(M ⊗ N) det N(−1)dimM/2.

This determines the Hasse-Witt symbol of the relevant
orthogonal spaces.

For discrete series L-packets of real orthogonal groups, the
epsilon factors are determined by the branching of the
infinitesimal characters.

The local conjecture for p-adic orthogonal groups was proved
by Waldspurger in 2010.

His papers have led to an explosion of research in the subject.

We now turn to the global conjecture.
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Let k be a number field, let G = SO2n+1×SO2n over k , and let
H = SO2n be the subgroup diagonally embedded in G.

Let A be the ring of adeles of k and let W ⊗ U =
∏

(Wv ⊗ Uv )
be a tempered irreducible representation of G(A) which
embeds in the space of automorphic forms

W ⊗ U ↪→ F (G(k)\G(A)).

Integrating automorphic forms over the coset space H(k)\H(A)
gives a linear form F → C which is invariant under H(A)

When is this linear form non-zero on the image of W ⊗ U?

An obvious necessary condition is

HomH(A)(W ⊗ U,C) =
∏

dimH(kv )(Wv ⊗ Uv ,C) 6= 0

so the local components are distinguished in their L-packets.
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The Hasse-Witt invariant of the local orthogonal spaces, for the
groups acting on Wv ⊗ Uv is related to

εv (M ⊗ N). det Nv (−1)dimMv/2.

Since we have global orthogonal spaces, Hilbert’s reciprocity
law implies that ∏

εv (M ⊗ N) = +1

This is the sign ε(M ⊗ N) in the functional equation of the
tensor product L-function

L(M ⊗ N, s) =
∏

v

Lv (M ⊗ N, s).

Hence L(M ⊗ N, s) vanishes to even order at the point s = 1/2.

The global conjecture predicts that the diagonal period integral
is non-zero on W ⊗ U if and only if

L(M ⊗ N,1/2) 6= 0.
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There is a similar conjecture for the diagonal period of
automorphic representations of Un × Un−1.

Here the tensor product L-function is a Rankin L-function for
GLn×GLn−1 over the quadratic extension field.

Wei Zhang has made tremendous progress in the unitary case,
using a relative trace formula of Jacquet and Rallis.
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The arithmetic GGP conjecture concerns the first derivative

L′(M ⊗ N,1/2)

when ε(M ⊗N) = −1.

The order of vanishing at s = 1/2 is odd.

In this case, the adelic group SO2n+1(A)× SO2n(A) which acts
on the representation W ⊗ U does not come from a pair of
orthogonal spaces over k , so there is no space of
automorphic forms.

We only have a conjecture when the infinite component∏
v |∞

SO2n+1(kv )× SO2n(kv )

of this adelic group is compact.

Then the number field k is totally real.
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For simplicity, assume that Wv ⊗ Uv is the trivial
representation, for all real places v of k .

Then the representation

W f ⊗ U f of SO2n+1(Af )× SO2n(Af )

occurs in the middle cohomology of a Shimura variety
S = T2n−1 × T2n−2, which has a canonical model over k .

The representation W f ⊗ U f should also occur in the Chow
group of homologically trivial cycles of codimension 2n − 1 on
S over k .

One can make such a cycle from the diagonally embedding
Shimura variety T = T2n−2. The height pairing 〈T , ∗〉 on the
Chow group gives an SO2n(Af ) invariant linear form.
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The arithmetic conjecture states that the following are
equivalent

I the linear form 〈T , ∗〉 is non-zero on the W f ⊗ U f

component of the Chow group

I L′(M ⊗ N,1/2) 6= 0
I the representation W f ⊗ U f occurs with multiplicity one in

the Chow group

There is refinement, giving an exact formula for the derivative
L′(M ⊗ N,1/2) in terms of the height of this component of T .

When S is a curve, the Chow group is the Mordell-Weil group of
its Jacobian. The exact formula was established by Shouwu
Zhang and his students in 2013.
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When n = 1, k = Q, and the group SO3(Af ) is split, S is the
modular curve X0(N) and the cycle T is given by Heegner
points, which are rational over the Hilbert class field of
K = Q(

√
−D).

Mapping the conjugate points of T to an elliptic curve quotient
X0(N)→ E and summing up, we get a point P in E(K ).

L′(E/K ,1) =

∫
E(C)

ω ∧ ω · ĥ(P) /
√

D.

When P has infinite order, Victor Kolyvagin proved that E(K )
has rank 1.
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SUR LES VALEURS DE CERTAINES FONCTIONS L
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Il y a quelques années, Vignéras a démontré le résultat suivant. Soit f une
forme modulaire holomorphe parabolique de poids k pair, de caractère
trivial, pour un groupe de congruence 03930(N). On suppose que f est une
newform. Pour un nombre premier p, soit ap la valeur propre de

l’opérateur de Hecke Tp associée à f. Notons Q(f) le sous-corps de C
engendré par les a p . C’est une extension finie de Q. Soient X un caractère
de Dirichlet quadratique, de conducteur premier à N, et tel que x( -1) = 1,
et f’ la newform telle que, pour presque tout p, f’ soit propre pour

l’opérateur de Hecke Tp, de valeur propre ~(p)ap. Notons L(f, s),
L(f’, s), les fonctions L habituelles associées à f et f’, supposons

L(f, k/2) ~ 0, L(f’, k/2) ~ 0. Alors, à un facteur explicite près, le

rapport L(f’, k/2)L(f, k/2) -1 est le carré d’un élément de Q(f) ([V]).
Pour démontrer ce résultat, Vignéras exprimait ces valeurs de fonctions L
en termes the coefficients de Fourier de formes modulaires de poids
demi-entier. On démontre ici ce même résultat, sous une forme plus
générale, par une méthode tout-à-fait différente.

Soient F un corps de nombres, M une algèbre de quaternions définie
sur F, G le groupe de ses éléments inversibles, E’ un sousmodule
irréductible de l’espace des formes automorphes paraboliques sur G(F)B
G(A) (cf. ci-dessous notations et II,1), 03C0’ la représentation automorphe de
G(A) dans E’, w son caractère central, 03C0 la représentation automorphe de
GL2(A) associée à 03C0’ par la correspondance de Jacquet-Langlands, T un
sous-tore maximal de G défini sur F, FT l’extension quadratique de F
associée à T, 03A9 un caractère de T(F)BT(A) coïncidant avec w sur le
centre Z(A) de G(A), II la représentation automorphe de GL2(FT(A»
qui relève 03C0 (cf. notations). On peut considérer Q comme un caractère de
F T(A), et définir la fonction L(03A0~2 s). Soit e’ E E’, considérons
l’intégrale

Le point fondamental est de montrer que (grosso modo) le carré de cette
intégrale est égale au produit de trois termes: un terme indépendant de T
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