Codimension one in Algebraic and Arithmetic Geometry.

Hélène Esnault FU Berlin/Harvard/Copenhagen

CHAT, December 4, 2023

Acknowledgements

We thank

Chi-Yun, Henri and Shekhar for the kind invitation.

We thank

Sasha Beilinson, Bhargav Bhatt, Spencer Bloch, Pierre Deligne, Ofer Gabber, Mark Kisin, Peter Scholze with whom along the years we discussed various aspects of the mathematics presented here.

Hodge conjecture

Hodge
 X smooth projective over \mathbb{C}

Hodge conjecture

Hodge

X smooth projective over \mathbb{C}
\Longrightarrow ??

Hodge conjecture

Hodge

X smooth projective over \mathbb{C}
\Longrightarrow ? ?
a \mathbb{Q}-sub-Hodge structure of $H^{2 j}(X)$ of Hodge type (j, j) should be supported in codimension j.
generalized Hodge (codimension 1): Grothendieck
X smooth projective over \mathbb{C}

Hodge conjecture

Hodge

X smooth projective over \mathbb{C}
\Longrightarrow ? ?
a \mathbb{Q}-sub-Hodge structure of $H^{2 j}(X)$ of Hodge type (j, j) should be supported in codimension j.
generalized Hodge (codimension 1): Grothendieck
X smooth projective over \mathbb{C}
\Longrightarrow ??

Hodge conjecture

Hodge

X smooth projective over \mathbb{C}
\Longrightarrow ??
a \mathbb{Q}-sub-Hodge structure of $H^{2 j}(X)$ of Hodge type (j, j) should be supported in codimension j.

generalized Hodge (codimension 1): Grothendieck

X smooth projective over \mathbb{C}
\Longrightarrow ??
a \mathbb{Q}-sub-Hodge structure H of $H^{i}(X)$ of Hodge type $(i-1,1),(i-2,2), \ldots,(1, i-1)$ should be supported in codimension 1 .

Hodge conjecture

Hodge

X smooth projective over \mathbb{C}
\Longrightarrow ??
a \mathbb{Q}-sub-Hodge structure of $H^{2 j}(X)$ of Hodge type (j, j) should be supported in codimension j.

generalized Hodge (codimension 1): Grothendieck

X smooth projective over \mathbb{C}
\Longrightarrow ??
a \mathbb{Q}-sub-Hodge structure H of $H^{i}(X)$ of Hodge type $(i-1,1),(i-2,2), \ldots,(1, i-1)$ should be supported in codimension 1.
equivalently

$$
\Longrightarrow ? ?\left[H_{d R}^{i}(X) \xrightarrow{\text { rest }=0} H_{d R}^{i}(\mathbb{C}(X)):=\lim _{U} H_{d R}^{i}(U)\right]
$$

ℓ-adic analog

weights

The notions of weight in complex geometry and in ℓ-adic theory in geometry over a finite field have been developed by Deligne and by the Grothendieck school. The analogy between the theories is foundational and led to predictions and theorems on both sides.

ℓ-adic analog

weights

The notions of weight in complex geometry and in ℓ-adic theory in geometry over a finite field have been developed by Deligne and by the Grothendieck school. The analogy between the theories is foundational and led to predictions and theorems on both sides.

Hodge filtration

On the complex Hodge theory side, not only do we have the weight filtration, but we also have the Hodge filtration. The analogy on the ℓ-adic side of the Hodge filtration over a finite field hasn't really been documented (by Deligne and by no-one).

ℓ-adic analogies

Tate $u \leadsto$ Hodge
 X smooth projective over \mathbb{F}_{q}

ℓ-adic analogies

Tate $u \leadsto$ Hodge
 X smooth projective over \mathbb{F}_{q}
 \Longrightarrow ??

ℓ-adic analogies

Tate $u \rightsquigarrow$ Hodge

X smooth projective over \mathbb{F}_{q}
\Longrightarrow ??
a Frob- invariant class of $H^{2 j}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}(j)\right)$ should be supported in codimension j.

ℓ-adic analogies

Tate $u \rightarrow$ Hodge

X smooth projective over \mathbb{F}_{q}
\Longrightarrow ??
a Frob- invariant class of $H^{2 j}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}(j)\right)$ should be supported in codimension j.
codimension 1 Tate?

ℓ-adic analogies

Tate $\rightsquigarrow>$ Hodge

X smooth projective over \mathbb{F}_{q}
\Longrightarrow ??
a Frob- invariant class of $H^{2 j}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}(j)\right)$ should be supported in codimension j.

codimension 1 Tate?

more generally: ℓ-adic analog of the Hodge filtration?

CHAT's motto: the narrative of a theorem

Thinking of

a possible ℓ-adic analogy of the Hodge filtration and more specifically of Grothendieck's codimension 1 conjecture led (me) to the proof of the

Thinking of

a possible ℓ-adic analogy of the Hodge filtration and more specifically of Grothendieck's codimension 1 conjecture led (me) to the proof of the

Lang-Manin conjecture (1966 for Manin) (Theorem 2002)

X projective smooth over \mathbb{F}_{q}, X rationally connected \Longrightarrow $X\left(\mathbb{F}_{q}\right) \neq \varnothing$, i.e. X has a rational point.

CHAT's motto: the narrative of a theorem

Thinking of

a possible ℓ-adic analogy of the Hodge filtration and more specifically of Grothendieck's codimension 1 conjecture led (me) to the proof of the

Lang-Manin conjecture (1966 for Manin) (Theorem 2002)

X projective smooth over \mathbb{F}_{q}, X rationally connected \Longrightarrow $X\left(\mathbb{F}_{q}\right) \neq \varnothing$, i.e. X has a rational point.

Let me explain why and give some prospective.

The corner piece of the Hodge filtration

Deligne Hodge II

X smooth projective over $\mathbb{C} \Longrightarrow \forall \varnothing \neq U \subset X$

The corner piece of the Hodge filtration

Deligne Hodge II

X smooth projective over $\mathbb{C} \Longrightarrow \forall \varnothing \neq U \subset X$

The corner piece of the Hodge filtration

Deligne Hodge II

X smooth projective over $\mathbb{C} \Longrightarrow \forall \varnothing \neq U \subset X$

$$
\begin{aligned}
& H_{d R}^{i}(X) \longrightarrow H_{d R}^{i}(U) \\
& \operatorname{surj} \\
& H^{i}(X, \mathcal{O})
\end{aligned}
$$

SO
$H^{i}(X, \mathcal{O}) \neq 0 \Longrightarrow\left[H_{d R}^{i}(X) \xrightarrow{\text { rest } \neq 0} H_{d R}^{i}(\mathbb{C}(X)]\right.$

The corner piece of the Hodge filtration

Deligne Hodge II

X smooth projective over $\mathbb{C} \Longrightarrow \forall \varnothing \neq U \subset X$

$$
\begin{aligned}
& H_{d R}^{i}(X) \longrightarrow H_{d R}^{i}(U) \\
& \operatorname{surj} \\
& H^{i}(X, \mathcal{O})
\end{aligned}
$$

so
$H^{i}(X, \mathcal{O}) \neq 0 \Longrightarrow\left[H_{d R}^{i}(X) \xrightarrow{\text { rest } \neq 0} H_{d R}^{i}(\mathbb{C}(X)]\right.$
expressible over the field of definition $K \subset \mathbb{C}$ of X
$(\star) \quad H^{i}(X, \mathcal{O}) \neq 0 \Longrightarrow\left[H_{d R}^{i}(X) \xrightarrow{\text { rest } \neq 0} H_{d R}^{i}(K(X)]\right.$

Algebraicity

so remarkable fact

For this particular case $H^{i}(X, \mathcal{O})=0$ making $H=H_{d R}^{i}(X)$ of Hodge type $(i-1,1), \ldots,(1, i-1)$, the codimension 1 conjecture is expressible over the field of definition $K \subset \mathbb{C}$ of X.

Algebraicity

so remarkable fact

For this particular case $H^{i}(X, \mathcal{O})=0$ making $H=H_{d R}^{i}(X)$ of Hodge type $(i-1,1), \ldots,(1, i-1)$, the codimension 1 conjecture is expressible over the field of definition $K \subset \mathbb{C}$ of X.

codimension 1 conjecture in this case is purely algebraic

It says the relation is iff in (\star) :
$H^{i}(X, \mathcal{O})=0 \Longrightarrow ? ?\left[H_{d R}^{i}(X) \xrightarrow{\text { rest }=0} H_{d R}^{i}(K(X)]\right.$

Examples

1st example

$i=1: H^{1}(X, \mathcal{O})=0 \Longleftrightarrow H_{d R}^{1}(X)=0$ by Hodge theory: indeed $0 \rightarrow H^{0}\left(X, \Omega^{1}\right) \rightarrow H_{d R}^{1}(X) \rightarrow H^{1}(X, \mathcal{O}) \rightarrow 0$ (Hodge-to-de Rham-degeneration) plus Hodge duality $h^{10}=h^{01}$.

Examples

1st example

$i=1: H^{1}(X, \mathcal{O})=0 \Longleftrightarrow H_{d R}^{1}(X)=0$ by Hodge theory: indeed $0 \rightarrow H^{0}\left(X, \Omega^{1}\right) \rightarrow H_{d R}^{1}(X) \rightarrow H^{1}(X, \mathcal{O}) \rightarrow 0$ (Hodge-to-de Rham-degeneration) plus Hodge duality $h^{10}=h^{01}$.

2nd example

$i=2: H^{2}(X, \mathcal{O})=0 \Longleftrightarrow H_{d R}^{2}(X)=N S(X) \otimes \mathbb{Q}$ by Hodge theory: indeed
exponential sequence $1 \rightarrow \mathbb{Z}(2 \pi \sqrt{-1}) \rightarrow \mathcal{O}_{\text {an }} \xrightarrow{\text { exp }} \mathcal{O}_{\text {an }}^{\times} \rightarrow 0$
$\Longrightarrow H^{1}\left(\mathcal{O}_{\text {an }}^{\times}\right) \xrightarrow{\text { surj }} H^{2}(X, \mathbb{Z}(2 \pi \sqrt{-1}))$ and GAGA \Longrightarrow
$H^{1}\left(\mathcal{O}_{\mathrm{an}}^{\times}\right)=H^{1}\left(\mathcal{O}^{\times}\right)=\operatorname{Pic}(X)$.
Note: in this case $i=2$ this is equivalent to the classical Hodge conjecture.

Examples

1st example

$i=1: H^{1}(X, \mathcal{O})=0 \Longleftrightarrow H_{d R}^{1}(X)=0$ by Hodge theory: indeed $0 \rightarrow H^{0}\left(X, \Omega^{1}\right) \rightarrow H_{d R}^{1}(X) \rightarrow H^{1}(X, \mathcal{O}) \rightarrow 0$ (Hodge-to-de Rham-degeneration) plus Hodge duality $h^{10}=h^{01}$.

2nd example

$i=2: H^{2}(X, \mathcal{O})=0 \Longleftrightarrow H_{d R}^{2}(X)=N S(X) \otimes \mathbb{Q}$ by Hodge theory: indeed
exponential sequence $1 \rightarrow \mathbb{Z}(2 \pi \sqrt{-1}) \rightarrow \mathcal{O}_{\text {an }} \xrightarrow{\text { exp }} \mathcal{O}_{\text {an }}^{\times} \rightarrow 0$
$\Longrightarrow H^{1}\left(\mathcal{O}_{\text {an }}^{\times}\right) \xrightarrow{\text { surj }} H^{2}(X, \mathbb{Z}(2 \pi \sqrt{-1}))$ and GAGA \Longrightarrow
$H^{1}\left(\mathcal{O}_{\text {an }}^{\times}\right)=H^{1}\left(\mathcal{O}^{\times}\right)=\operatorname{Pic}(X)$.
Note: in this case $i=2$ this is equivalent to the classical Hodge conjecture.
So purely analytic proofs in spite of purely algebraically formulated problem; those are the only known examples.

Motivic implication

Bloch's decomposition of the diagonal
$C H_{0}\left(X_{\mathbb{C}}\right)=\mathbb{Q} \Longrightarrow \forall i \geq 1 \quad\left[H_{d R}^{i}(X) \xrightarrow{\text { rest }=0} H_{d R}^{i}(K(X))\right]$

Motivic implication

Bloch's decomposition of the diagonal
$C H_{0}\left(X_{\mathbb{C}}\right)=\mathbb{Q} \Longrightarrow \forall i \geq 1 \quad\left[H_{d R}^{i}(X) \xrightarrow{\text { rest }=0} H_{d R}^{i}(K(X))\right]$ thus in particular

Motivic implication

Bloch's decomposition of the diagonal
$C H_{0}\left(X_{\mathbb{C}}\right)=\mathbb{Q} \Longrightarrow \forall i \geq 1 \quad\left[H_{d R}^{i}(X) \xrightarrow{\text { rest }=0} H_{d R}^{i}(K(X))\right]$ thus in particular
$C H_{0}\left(X_{\mathbb{C}}\right)=\mathbb{Q} \Longrightarrow \forall i \geq 1 \quad H^{i}(X, \mathcal{O})=0$.

Motivic implication

Bloch's decomposition of the diagonal

$$
C H_{0}\left(X_{\mathbb{C}}\right)=\mathbb{Q} \Longrightarrow \forall i \geq 1 \quad\left[H_{d R}^{i}(X) \xrightarrow{\text { rest }=0} H_{d R}^{i}(K(X))\right]
$$ thus in particular

$$
C H_{0}\left(X_{\mathbb{C}}\right)=\mathbb{Q} \Longrightarrow \forall i \geq 1 \quad H^{i}(X, \mathcal{O})=0
$$

Comment

So no codimension 1 Hodge conjecture but the motivic condition implies the (perhaps? perhaps not?) stronger codimension 1 property.

Motivic implication

Bloch's decomposition of the diagonal

$$
C H_{0}\left(X_{\mathbb{C}}\right)=\mathbb{Q} \Longrightarrow \forall i \geq 1 \quad\left[H_{d R}^{i}(X) \xrightarrow{\text { rest }=0} H_{d R}^{i}(K(X))\right]
$$

thus in particular

$$
C H_{0}\left(X_{\mathbb{C}}\right)=\mathbb{Q} \Longrightarrow \forall i \geq 1 \quad H^{i}(X, \mathcal{O})=0
$$

Comment

So no codimension 1 Hodge conjecture but the motivic condition implies the (perhaps? perhaps not?) stronger codimension 1 property.
In fact the motivic conjectures imply iff:
$H^{i}(X, \mathcal{O})=0 \forall i \geq 1 \Longrightarrow C H_{0}\left(X_{\mathbb{C}}\right)=\mathbb{Q}$ so in particular it implies
$\left[H_{d R}^{i}(X) \xrightarrow{\text { rest }=0} H_{d R}^{i}(K(X))\right] \forall i \geq 1$.

Motivic implication

Bloch's decomposition of the diagonal

$$
C H_{0}\left(X_{\mathbb{C}}\right)=\mathbb{Q} \Longrightarrow \forall i \geq 1 \quad\left[H_{d R}^{i}(X) \xrightarrow{\text { rest }=0} H_{d R}^{i}(K(X))\right]
$$

thus in particular

$$
C H_{0}\left(X_{\mathbb{C}}\right)=\mathbb{Q} \Longrightarrow \forall i \geq 1 \quad H^{i}(X, \mathcal{O})=0
$$

Comment

So no codimension 1 Hodge conjecture but the motivic condition implies the (perhaps? perhaps not?) stronger codimension 1 property.
In fact the motivic conjectures imply iff:
$H^{i}(X, \mathcal{O})=0 \forall i \geq 1 \Longrightarrow C H_{0}\left(X_{\mathbb{C}}\right)=\mathbb{Q}$ so in particular it implies
$\left[H_{d R}^{i}(X) \xrightarrow{\text { rest }=0} H_{d R}^{i}(K(X))\right] \forall i \geq 1$.
Truly this is very bold and might make us dizzy.

Narrative

was driving

on the highway between Essen (Germany) and Paris (France). It was raining, the windscreen wipers were scratching on the window with a regular squeaky noise. All of a sudden in Belgium I thought on a possible analogy to the condition $H^{i}(X, \mathcal{O})=0$ for X smooth projective defined over \mathbb{F}_{q}. Let me first explain why one wants the analogy and then what it is.

Integrality

Deligne's integrality

X smooth $/ \mathbb{F}_{q} \Longrightarrow$ the eigenvalues of the geometric Frobenius acting on $H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Z}_{\ell}\right)$ lie in $\overline{\mathbb{Z}}$.

Integrality

Deligne's integrality

X smooth $/ \mathbb{F}_{q} \Longrightarrow$ the eigenvalues of the geometric Frobenius acting on $H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Z}_{\ell}\right)$ lie in $\overline{\mathbb{Z}}$.

Gabber's purity together with localization
\Longrightarrow : if $\left[H^{i}\left(X_{\mathbb{F}_{p}}, \mathbb{Q}_{\ell}\right) \xrightarrow{\text { rest }=0} H^{i}\left(\mathbb{F}_{p}\left(X_{\mathbb{F}_{p}}\right), \mathbb{Q}_{\ell}\right)\right]$, then the eigenvalues of the geometric Frobenius acting on $H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Z}_{\ell}\right) \forall i>0$ all lie in $q \cdot \overline{\mathbb{Z}}$.

Divisibility of the eigenvalues of the geometric Frobenius

Grothendieck-Lefschetz Trace Formula
 $\left|X\left(\mathbb{F}_{q}\right)\right|=1+\sum_{i \geq 1}(-1)^{i} \operatorname{Tr} \operatorname{Frob} \mid H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Z}_{\ell}\right)$

Divisibility of the eigenvalues of the geometric Frobenius

Grothendieck-Lefschetz Trace Formula

$$
\left|X\left(\mathbb{F}_{q}\right)\right|=1+\sum_{i \geq 1}(-1)^{i} \operatorname{Tr} \operatorname{Frob} \mid H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Z}_{\ell}\right)
$$

SO

$\left[H^{i}\left(X_{\mathbb{F}_{p}}, \mathbb{Q}_{\ell}\right) \xrightarrow{\text { rest }=0} H^{i}\left(\mathbb{F}_{p}\left(X_{\mathbb{F}_{p}}\right), \mathbb{Q}_{\ell}\right)\right] \Longrightarrow\left|X\left(\mathbb{F}_{q}\right)\right| \equiv 1 \bmod q$.

Divisibility of the eigenvalues of the geometric Frobenius

Grothendieck-Lefschetz Trace Formula

$$
\left|X\left(\mathbb{F}_{q}\right)\right|=1+\sum_{i \geq 1}(-1)^{i} \operatorname{Tr} \operatorname{Frob} \mid H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Z}_{\ell}\right)
$$

SO

$$
\left[H^{i}\left(X_{\mathbb{F}_{p}}, \mathbb{Q}_{\ell}\right) \xrightarrow{\text { rest }=0} H^{i}\left(\mathbb{F}_{p}\left(X_{\mathbb{F}_{p}}\right), \mathbb{Q}_{\ell}\right)\right] \Longrightarrow\left|X\left(\mathbb{F}_{q}\right)\right| \equiv 1 \bmod q
$$

So on the highway

it vaguely appeared to me that is one has an analog to $H^{i}(X, \mathcal{O})=0 \forall i \geq 1$ then one would wish to have
$\left[H^{i}\left(X_{\mathbb{F}_{p}}, \mathbb{Q}_{\ell}\right) \xrightarrow{\text { rest }=0} H^{i}\left(\mathbb{F}_{p}\left(X_{\mathbb{F}_{p}}\right), \mathbb{Q}_{\ell}\right)\right] \forall i \geq 1$ and then one would obtain not only the existence of a rational point on X but in fact even a congruence for the number of rational points.

Wishfully

The analog of $H^{i}(X, \mathcal{O})=0$
for X smooth projective over \mathbb{F}_{q} is: the eigenvalues of the geometric Frobenius acting on $H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Z}_{\ell}\right)$ all lie in $q \cdot \overline{\mathbb{Z}}$

The analog of $H^{i}(X, \mathcal{O})=0$

for X smooth projective over \mathbb{F}_{q} is: the eigenvalues of the geometric Frobenius acting on $H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Z}_{\ell}\right)$ all lie in $q \cdot \overline{\mathbb{Z}}$
while obviously the analog of $\left[H_{d R}^{i}(X)=0 \xrightarrow{\text { rest }=0} H_{d R}^{i}(K(X))\right]$ for X smooth projective over \mathbb{F}_{q} is:
$\left[H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}\right) \xrightarrow{\text { rest }=0} H^{i}\left(\overline{\mathbb{F}}_{p}\left(X_{\mathbb{F}_{p}}\right), \mathbb{Q}_{\ell}\right)\right]$

So for the Lang-Manin conjecture

Has to see

Bloch's (and later Bloch-Srinivas') technic shows as well: X smooth projective over \mathbb{F}_{q} then
$C H_{0}\left(X_{\overline{\mathbb{F}_{q}(X)}}\right)=\mathbb{Q} \Longrightarrow\left[H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}\right) \xrightarrow{\text { rest }=0} H^{i}\left(\overline{\mathbb{F}}_{p}\left(X_{\mathbb{F}_{q}}\right), \mathbb{Q}_{\ell}\right)\right]$
$\forall i \geq 1$

So for the Lang-Manin conjecture

Has to see

Bloch's (and later Bloch-Srinivas') technic shows as well: X smooth projective over \mathbb{F}_{q} then
$C H_{0}\left(X_{\overline{\mathbb{F}_{q}(X)}}\right)=\mathbb{Q} \Longrightarrow\left[H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}\right) \xrightarrow{\text { rest }=0} H^{i}\left(\overline{\mathbb{F}}_{p}\left(X_{\mathbb{F}_{q}}\right), \mathbb{Q}_{\ell}\right)\right]$
$\forall i \geq 1$

as, essentially by definition

X smooth projective over \mathbb{F}_{q}, X rationally connected
$\Longrightarrow C H_{0}\left(X_{\mathbb{F}_{q}(X)}\right)=\mathbb{Q}$

So for the Lang-Manin conjecture

Has to see

Bloch's (and later Bloch-Srinivas') technic shows as well: X smooth projective over \mathbb{F}_{q} then
$C H_{0}\left(X_{\overline{\mathbb{F}_{q}(X)}}\right)=\mathbb{Q} \Longrightarrow\left[H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}\right) \xrightarrow{\text { rest }=0} H^{i}\left(\overline{\mathbb{F}}_{p}\left(X_{\mathbb{F}_{q}}\right), \mathbb{Q}_{\ell}\right)\right]$
$\forall i \geq 1$

as, essentially by definition

X smooth projective over \mathbb{F}_{q}, X rationally connected
$\Longrightarrow C H_{0}\left(X_{\mathbb{F}_{q}(X)}\right)=\mathbb{Q}$
Theorem (generalization of the Lang-Manin conjecture) (2002)
$C H_{0}\left(X_{\overline{\mathbb{F}_{q}(X)}}\right)=\mathbb{Q} \Longrightarrow\left|X\left(\mathbb{F}_{q}\right)\right| \equiv 1 \bmod q$

Analogy also yields formulation of

"Tate conjecture" in codimension 1

X smooth projective over \mathbb{F}_{q} such that the eigenvalues of the geometric Frobenius on $H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}\right)$ lies in $q \cdot \overline{\mathbb{Z}} \Longrightarrow$??
$\left[H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}\right) \xrightarrow{\text { rest }=0} H^{i}\left(\overline{\mathbb{F}}_{p}\left(X_{\mathbb{F}_{q}}\right), \mathbb{Q}_{\ell}\right)\right]$

Away from analogies: p-adic Hodge theory

Grothendieck's codimension 1 conjecture

seen on $X_{\mathbb{Q}_{q}}$, in étale p-adic cohomology

Away from analogies: p-adic Hodge theory

Grothendieck's codimension 1 conjecture

seen on $X_{\overline{\mathbb{Q}}_{q}}$, in étale p-adic cohomology and on $X_{\mathbb{Q}_{p}}$ in de Rham cohomology

Away from analogies: p-adic Hodge theory

Grothendieck's codimension 1 conjecture

seen on $X_{\mathbb{Q}_{q}}$, in étale p-adic cohomology and on $X_{\mathbb{Q}_{p}}$ in de Rham cohomology for p large.

Away from analogies: p-adic Hodge theory

Grothendieck's codimension 1 conjecture

seen on $X_{\mathbb{Q}_{q}}$, in étale p-adic cohomology and on $X_{\mathbb{Q}_{p}}$ in de Rham cohomology for p large.

prismatic lift

Those two cohomologies are induced from prismatic cohomology on $X_{\mathbb{Z}_{p}}$. It is natural to ask whether this prismatic lift yields a non-trivial information on the problem.

