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Explicit class field theory

This loosely formulated, somewhat ill-posed problem seeks to
extend two prototypical results:

1. Kronecker-Weber: All abelian extensions of Q are generated
by roots of unity, i.e., values of the function ™2 at rational
arguments.

2. Complex multiplication: All abelian extensions of imaginary
quadratic fields can be generated by values of modular functions at
imaginary quadratic arguments.

Hilbert’s twelfth problem: to identify what class of functions
might play the role of the exponential or modular functions, in
generating all abelian extensions of a given number field.



The nature of this lecture

This lecture is a personal account of how my — still limited —
understanding of this problem has evolved over the years;

The account | will give is chronological, rather than logical,
focussing on the meandering, roundabout, often serendipitous
nature of mathematical research.



Early influences: Harvard (1987-91)

It was a wonderful time and place to study elliptic curves!
These results were in the air:

e Karl Rubin's proof of finiteness of the Shafarevich-Tate group for
CM elliptic curves, building on Coates-Wiles (~ 1986);

e The Gross-Zagier formula (~ 1985);
e Kolyvagin's descent, “Euler systems” (~ 1987)

e Tame refinements of the BSD conjecture (Mazur-Tate seminar in
1986), Stark and Gross-Stark conjectures;

e Kato's theorem (1991).



A formula of Rubin

E/Q: a CM elliptic curve (by a quadratic imaginary field K).

L(E,1) = L(»~1,0) for a Hecke character of infinity type (1,0),
P((@)=a, ¥ ((0)=a

Let Z,,Katz be the Katz p-adic L-function of K.
L(E,1) = L(¢~1,0) ~ L,"(y).

Rubin’s Formula (1991): If L(E,1) = 0, then there is a global
point P € E(Q) ® Q for which

ngatz(Qp*) _ Q;l Ing,(P).




A similar formula of Perrin Riou

Shortly after, Bernadette Perrin Riou proposed a formula in the
same spirit, for non CM curves.

The formulae of Rubin and Perrin-Riou suggest a tantalising
approach to the construction of rational and algebraic points on
elliptic curves, through the evaluation of leading terms of (p-adic)
L-functions, just like Stark conjecturally constructs units in abelian
extensions.

Problem: Extend Stark’s conjecture to elliptic curves, in order to
produce algebraic points on elliptic curves that could not be
obtained otherwise.



From the sublime to the mundane

Let H be the Hilbert class field of an imaginary quadratic field K.

E/Q an elliptic curve satisfying a “Heegner hypothesis”.

Theorem (Bertolini, D, 1989)
For all x : Gal(H/K) — C*,

ords—1 L(E/K,x,s)=1 = dimc(E(H)® C)X =1.
This is a minor extension of the result of Kolyvagin.

It was nonetheless important on a personal level:

e it marked my first collaboration with Massimo Bertolini;

e it suggests an interesting open question.



An intriguing question

Let H be the Hilbert class field of a real quadratic field K;
E/Q an elliptic curve satisfying a “modified Heegner hypothesis”.

ords—1 L(E/K,x,s) isodd, for all x : Gal(H/K) — C*.
ords—1 L(E/H,s) > [H : K]

rank(E(H)) > [H : K].

Question: How can one construct the systematic supply of points
in E(H) whose existence is predicted by the Birch and
Swinnerton-Dyer conjecture?



Further influences: Princeton (1991-94)

My first years in Princeton were relatively tranquil.

Then, in June 1993:

| spent an exciting last year in Princeton absorbing these new
ideas. Notably: the deformation theory of Galois representations
and modular forms.



First years at McGill (1994-99)

The first serious steps towards an “elliptic Stark conjecture” began
with a project with Massimo, whose aim was to transpose the
p-adic Birch and Swinnerton-Dyer conjecture of Mazur, Tate, and
Teitelbaum to the anti-cyclotomic setting.

A modest consequence:

Theorem (Bertolini, D, 1997)
For all x : Gal(H/K) — C*,

L(E/K,x;1)#0 = dimc(E(H) ® C)X =0.
The proof rests crucially on congruences between modular forms.

It was vastly generalised by Matteo Longo, Ye Tian, Shouwu
Zhang, and others.



A Rubin—Perrin-Riou style formula

The anti-cyclotomic p-adic L-function is in the Iwasawa algebra of
G = Gal(Ks/K), K := anticyclotomic Zp-extension of K.

Lp(E, Koo/ K) € Zp[[Geo]]-

Theorem (Bertolini, D, 1998)
L(E, Kso/K) ~ log(P)?, where P € E(Q).

The point P is obtained from Heegner points.

This result is both a p-adic analogue of Gross-Zagier, and an
anticyclotomic analogue of Rubin-Perrin-Riou.

It seemed to extend formally to real quadratic fields!



Stark Heegner points: a first pass

Caveat: There is no “anticyclotomic Zy-extension” of a real
quadratic K; and G is a finite group!

Auxiliary primes (a la Taylor-Wiles). Let Kéﬁ) be the maximal
abelian p-extension unramified outside ¢ and p.
Zn(E, Ko(ﬁ)/K) € ZP[G&?)]. A “stub” of the p-adic L-function.

Conjecture (Inspired by the “tame refinements” of Mazur-Tate)
There is a global point P € E(K) for which

lim a(E) 2%, (E, KO /K) = log(P).

{—00

Stark-Heegner points over real quadratic fields Number theory
(Tiruchirapalli, 1996) 41-69. Contemp. Math. 210, AMS,
Providence, RI, 1998.



A more convincing construction (~ 2000)

J. Milne: "Philosophically, one expects that, with the exception of
Q, one can not obtain abelian extensions of totally real fields by
adjoining special values of automorphic functions.”

Automorphic functions: L2(IF'\G(R)) C HO(I', Cont(G(R), R)).

Loose idea: the higher - cohomology of suitable function spaces
on G(R), or G(Ag), or G(Qp), might supply the necessary
extension of the notion of “automorphic function”.

It seems more tractable, (but not indispensable!) to work with
p-adic symmetric spaces.



The Drinfeld upper half-plane and the lhara group
Let Hp :=P1(Cp) — P1(Qp) be Drinfeld’s upper half plane.
I =SLy(Z[1/p]) acts on H, by Mobius transformations.
It does not act discretely, and H}(I', Q) = 0.
The interesting cohomology occurs in degree 2.
Because ' = SL2(Z) *#ry(p) SL2(Z),
H?(T, Q) = HY(Fo(p), Q) as a Hecke module.

Modularity: Let E be an elliptic curve over Q of conductor p.
There is a Hecke eigenclass ag € H?(T',Z) satisfying

Ti(ag) = a(E) - ag, for all L # p.



Trivialising the two-cocyle ag

Let A* be the multiplicative group of non-vanishing rigid analytic
functions on H,. Let g be the Tate period of E.

E

Idea: Realise g¢° as the periods of an A*-valued one-cochain.

Theorem
The class g becomes trivial in H*(I', AX). In other words, there
is a one-cochain Jg : I — A* satisfying, for all y1,7v, € T:

Je(n) % Je(m172)~t X 1 (Je(r2)) = ng(Vl,’Yz).

This theorem is a formal consequence of a 1986 conjecture of
Mazur, Tate and Teitelbaum, proved by Greenberg-Stevens in
1990. Thus, it was proved 10 years before it was stated!



Rigid analytic cocycles

Je(m) x Je(n2) "t x 1 (Je(12)) = qe(m2),

Definition. The class of Jg in H1(I', A% /q%) is called the rigid
analytic cocycle attached to E.

For 7 € Hp, there is an evaluation map ev, : A — (CE,
evy : HY(T, A% /qg) — HY(T+,C} /qg).

If T, =1, the target is trivial. It is non-trivial when I ~ Z,
which occurs precisely when Q(7) is real quadratic.

Jelr] = Je(ro)(), () = Stabr(r).

This quantity is called the value of Jg at the RM point 7.



Stark-Heegner points

General principle: The RM values of rigid analytic cocycles
provide an appropriate — albeit, still poorly understood —
substitute for the CM values of automorphic functions.

Conjecture (2000)

If 7 is an RM point and K = Q(7), then Jg[r] is a global point on
E, defined over a ring class field of K.

These Stark-Heegner points should behave, in most key respects,
Just like Heegner points over ring class fields of imaginary
quadratic fields.



Numerical example

E=11A:y?>+y =x3— x> —10x — 20.

The field Q(v/101) has class number one.

1+ /101
T

] = (x/%,y/t*) (mod 112),
where

= 1081624136644692539667084685116849
= —1939146297774921836916098998070620047276215775500
—450348132717625197271325875616860240657045635493v/101
t = 15711350731963510



Second numerical example

E=37TA:y’+y=x3—x.
The field Q(v/1297) has class number 11.

141297

JE 5

] =(x,y) (mod 37%9),

where x satisfies the polynomial

061x11 — 4035x10 — 3868x2 + 19376x8 + 13229x7 — 27966x5°
—21675x° + 11403x* 4+ 11859x3 + 1391x2 — 369x — 37.

It generates the Hilbert class field of Q(+/1297).



Relation with Stark’s conjecture (2001-2006)

With Pierre Charollois and Samit Dasgupta, we explored the
relation between Stark-Heegner points and (Gross-)Stark units.

| first met Samit in 2001, in Orlando, and Pierre in 2002 in
Baltimore, at a conference on “Stark’s conjecture: recent work and
new directions”. Both were at McGill in the period 2005-2006.

Samit’s thesis (2004): The group H?(T',Z) = H(To(p),Z)
contains a class ay,, that is Eisenstein, the Dedekind Rademacher
homomorphism encoding the periods of A(pz)/A(z).

Theorem (Samit, 2003; Alice Pozzi, Jan Vonk, 2019)

There is a one-cochain Jpr : I — A* satisfying, for all
1,72 € T2 Jpr(11) X Jor(172) 7! X 11(Ibr(72)) = por172),



The RM values of the Dedekind-Rademacher cocycle

Jpr € HY(I, A% /p?) is the Dedekind-Rademacher cocycle.

Conjecture (Dasgupta, D, 2003)

If 7 is an RM point and K = Q(7), then Jpgr|[7] is a global p-unit
in a ring class field of K.

A “Kronecker limit formula” relating Jpr[7] to p-adic L-series.
L,(K,C,s) := Deligne-Ribet p-adic L-function.
JIJDFR[T] = JDR[T] X JDR[T/] = Noerp(T)/QPJDR[T]‘

Theorem (Dasgupta, D, 2003)

The quantity log,(Jg[7]) is equal to L,(K,C;,0), and hence its
algebraicity follows from the p-adic Gross-Stark conjecture.



Proof of the Gross-Stark conjecture

Theorem (Dasupta, Pollack, D, ~ 2011)

The p-adic Gross-Stark conjecture is true (for totally odd
characters of totally real fields).

Key ingredient in the proof: deformation theory of Hilbert modular
Eisenstein series, and of the associated Galois representations.

This direction has been taken much further by Pierre and Samit,
and Samit and Mahesh Kakde (extensions to GL(n), tame
refinements of the Gross-Stark conjecture, etc.)

Their successes continue to place Stark’s conjecture and (p-adic)
L-functions at the center of an important approach to explicit class
field theory.



What geometry underlies rigid analytic cocycles?

In the period 2006-2015, collaborations with Kartik Prasanna and
Victor Rotger nudged me towards a more “geometric” approach to
Stark-Heegner points.

e Analogy between Stark-Heegner points and Abel-Jacobi images
of (algebraic) cycles.

e Arithmetic of triple products of modular forms, L(f ® g ® h, s)
led to theoretical progress on Stark-Heegner points.

e This was far from clear to me at the outset, and | owe much to
Victor's insistence (in the summer of 2010, in Barcelona) that this
was a worthwhile direction to pursue.

weight (2,2,2) ~ weight (2,1,1).



p-adic families of diagonal cycles

Let K be a real quadratic field.

Theorem (Victor Rotger, D, 2011)

For all x : Gal(H/K) — C*,
L(E/K,x;1)#0 = dimc(E(H) ® C)X =0.

Proof. Kato method 's with “Beilinson-Kato elements” replaced
by "diagonal cycle classes in p-adic families”.

e K imaginary quadratic, analytic rank 1: Bertolini, D (1987).

e K imaginary quadratic, analytic rank 0: Bertolini, D (1997).

e K real quadratic, analytic rank 0: Rotger, D, (2011).

e K real quadratic, analytic rank 1: completely open.



Rigid meromorphic cocycles (2017- )

Let ' = SLy(Z[1/p]) and M* be the multiplicative group of rigid
meromorphic functions on Hp.

Definition (Jan Vonk, D)

A rigid meromorphic cocycle is a class in HY(I', M*).

Clues that this notion might be fruitful:

e A conjecture of Bill Duke and Yingkun Li on the fourier
coefficients of weak harmonic Maass forms.

e A p-adic analogue, with Alan Lauder and Victor Rotger, relating
fourier coefficients of p-adic deformations of RM theta series of
weight one, to the p-adic logarithms of g-units in H, with g # p.
The p-adic L-functions only know about p-adic logarithms of
p-units! Fourier coefficients seem to carry richer information.



Construction of rigid meromorphic cocycles

Theorem (Jan Vonk, D)

Suppose p = 2,3,5,7, or 13. Then for all T € HE‘M, there is an
essentially unique J, € H(I', M*) for which the divisor of J.(7y) is
supported on I't, for all v € T.

e The construction and classification is based on ideas of Marvin
Knopp, Youngju Choie, Don Zagier, ... on “rational period
functions”.

e Jan and | were strongly inspired article of Duke, Ozlem Imamoglu
and Arpad Toth on “modular cocycles and linking numbers”.



Real quadratic singular moduli

Conjecture (Vonk, D, 2017)
If 71,2 are two RM points in Hp, then

Jp(m1,72) = In[m2] (= dnlm] ™)

behaves “in all key respects” just like the difference
Joo(T1,72) = j(71) — j(72)

where 7, and 7 are CM points of H.

e They belong to the expected compositum of narrow ring class
fields of real quadratic fields;

e They admit explicit factorisations, as in the work of Gross and
Zagier.



Evidence for RM singular moduli

e There is ample experimental evidence for the conjectures on RM
singular moduli.

e There is also a growing body of theoretical evidence, based on
the study of p-adic deformations of modular forms and their
associated Galois representations: (joint works with Yingkun Li,
Alice Pozzi, and Jan Vonk).

e Whereas the algebraicity of Stark-Heegner points remains
shrouded in mystery, the prospects for establishing the predicted
algebraicity of “differences of RM singular moduli” are vastly
better.



Closing remarks

The path leading up to a “theory of RM singular moduli” has been
slow and tortuous, filled with misconceptions, false leads, dead
ends, and long periods of just being stuck;

It has been an enjoyable and far from solitary trek! | owe a
tremendous debt to

e The mentors whose ideas launched me in a fruitful direction;
(Dick Gross, Andrew Wiles, John Tate, Barry Mazur, Karl Rubin,
Bernadette Perrin-Riou, Ralph Greenberg, Glenn Stevens, ...)

e The collaborators who frequently lifted me out of a rut,
(Massimo Bertolini, Adrian lovita, Samit Dasgupta, Pierre
Charollois, Adam Logan, Kartik Prasanna, Victor Rotger, Alan
Lauder, Jan Vonk, Alice Pozzi, ... )



Thank you for your attention!




